Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288039607> ?p ?o ?g. }
- W4288039607 endingPage "5385" @default.
- W4288039607 startingPage "5385" @default.
- W4288039607 abstract "Aiming at the typical faults in the coal mills operation process, the kernel extreme learning machine diagnosis model based on variational model feature extraction and kernel principal component analysis is offered. Firstly, the collected signals of vibration and loading force, corresponding to typical faults of coal mill, are decomposed by variational model decomposition, and the intrinsic model functions at different scales are obtained. Then, the eigenvectors consisting of feature energy and sample entropy in these functions are respectively calculated, and the kernel principal component analysis is used for noise removal and dimensionality reduction. Finally, the kernel extreme learning machine model is trained and tested with the dimension reduced feature vector as input and the corresponding coal mill state as output. The results show that the variational model decomposition extraction can improve the input features of the model compared with the single eigenvector model, and the kernel principal component analysis method can significantly reduce the information redundancy and the correlation of eigenvectors, which can effectively save time and cost, and improve the prediction performance of the model to some extent. The establishment of this model provides a new idea for the study of coal mill fault diagnosis." @default.
- W4288039607 created "2022-07-27" @default.
- W4288039607 creator A5002508573 @default.
- W4288039607 creator A5004467877 @default.
- W4288039607 creator A5007697593 @default.
- W4288039607 creator A5032589077 @default.
- W4288039607 creator A5032631849 @default.
- W4288039607 creator A5059764251 @default.
- W4288039607 creator A5066382802 @default.
- W4288039607 creator A5068204719 @default.
- W4288039607 creator A5068792201 @default.
- W4288039607 creator A5075696071 @default.
- W4288039607 date "2022-07-26" @default.
- W4288039607 modified "2023-09-26" @default.
- W4288039607 title "Fault Diagnosis of Coal Mill Based on Kernel Extreme Learning Machine with Variational Model Feature Extraction" @default.
- W4288039607 cites W1975204851 @default.
- W4288039607 cites W1993717606 @default.
- W4288039607 cites W1997918730 @default.
- W4288039607 cites W2000982976 @default.
- W4288039607 cites W2023551781 @default.
- W4288039607 cites W2063922127 @default.
- W4288039607 cites W2111072639 @default.
- W4288039607 cites W2121971770 @default.
- W4288039607 cites W2139089006 @default.
- W4288039607 cites W2140449724 @default.
- W4288039607 cites W2470004514 @default.
- W4288039607 cites W2473549412 @default.
- W4288039607 cites W2606855263 @default.
- W4288039607 cites W2747616430 @default.
- W4288039607 cites W2753648062 @default.
- W4288039607 cites W2755946897 @default.
- W4288039607 cites W2786729166 @default.
- W4288039607 cites W2801253349 @default.
- W4288039607 cites W2888495088 @default.
- W4288039607 cites W2896503610 @default.
- W4288039607 cites W2900638684 @default.
- W4288039607 cites W2984058904 @default.
- W4288039607 cites W3019385468 @default.
- W4288039607 cites W3026742379 @default.
- W4288039607 cites W3083581526 @default.
- W4288039607 cites W3156618009 @default.
- W4288039607 doi "https://doi.org/10.3390/en15155385" @default.
- W4288039607 hasPublicationYear "2022" @default.
- W4288039607 type Work @default.
- W4288039607 citedByCount "4" @default.
- W4288039607 countsByYear W42880396072022 @default.
- W4288039607 countsByYear W42880396072023 @default.
- W4288039607 crossrefType "journal-article" @default.
- W4288039607 hasAuthorship W4288039607A5002508573 @default.
- W4288039607 hasAuthorship W4288039607A5004467877 @default.
- W4288039607 hasAuthorship W4288039607A5007697593 @default.
- W4288039607 hasAuthorship W4288039607A5032589077 @default.
- W4288039607 hasAuthorship W4288039607A5032631849 @default.
- W4288039607 hasAuthorship W4288039607A5059764251 @default.
- W4288039607 hasAuthorship W4288039607A5066382802 @default.
- W4288039607 hasAuthorship W4288039607A5068204719 @default.
- W4288039607 hasAuthorship W4288039607A5068792201 @default.
- W4288039607 hasAuthorship W4288039607A5075696071 @default.
- W4288039607 hasBestOaLocation W42880396071 @default.
- W4288039607 hasConcept C11413529 @default.
- W4288039607 hasConcept C114614502 @default.
- W4288039607 hasConcept C121332964 @default.
- W4288039607 hasConcept C122280245 @default.
- W4288039607 hasConcept C12267149 @default.
- W4288039607 hasConcept C153180895 @default.
- W4288039607 hasConcept C154945302 @default.
- W4288039607 hasConcept C158693339 @default.
- W4288039607 hasConcept C182335926 @default.
- W4288039607 hasConcept C27438332 @default.
- W4288039607 hasConcept C2780150128 @default.
- W4288039607 hasConcept C33923547 @default.
- W4288039607 hasConcept C41008148 @default.
- W4288039607 hasConcept C50644808 @default.
- W4288039607 hasConcept C52622490 @default.
- W4288039607 hasConcept C62520636 @default.
- W4288039607 hasConcept C70518039 @default.
- W4288039607 hasConcept C74193536 @default.
- W4288039607 hasConceptScore W4288039607C11413529 @default.
- W4288039607 hasConceptScore W4288039607C114614502 @default.
- W4288039607 hasConceptScore W4288039607C121332964 @default.
- W4288039607 hasConceptScore W4288039607C122280245 @default.
- W4288039607 hasConceptScore W4288039607C12267149 @default.
- W4288039607 hasConceptScore W4288039607C153180895 @default.
- W4288039607 hasConceptScore W4288039607C154945302 @default.
- W4288039607 hasConceptScore W4288039607C158693339 @default.
- W4288039607 hasConceptScore W4288039607C182335926 @default.
- W4288039607 hasConceptScore W4288039607C27438332 @default.
- W4288039607 hasConceptScore W4288039607C2780150128 @default.
- W4288039607 hasConceptScore W4288039607C33923547 @default.
- W4288039607 hasConceptScore W4288039607C41008148 @default.
- W4288039607 hasConceptScore W4288039607C50644808 @default.
- W4288039607 hasConceptScore W4288039607C52622490 @default.
- W4288039607 hasConceptScore W4288039607C62520636 @default.
- W4288039607 hasConceptScore W4288039607C70518039 @default.
- W4288039607 hasConceptScore W4288039607C74193536 @default.
- W4288039607 hasIssue "15" @default.
- W4288039607 hasLocation W42880396071 @default.
- W4288039607 hasOpenAccess W4288039607 @default.