Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288043229> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4288043229 abstract "We consider the stochastic behavior of a class of local $U$-statistics of Poisson processes$-$which include subgraph and simplex counts as special cases, and amounts to quantifying clustering behavior$-$for point clouds lying in diverging halfspaces. We provide limit theorems for distributions with light and heavy tails. In particular, we prove finite-dimensional central limit theorems. In the light tail case we investigate tails that decay at least as slow as exponential and at least as fast as Gaussian. These results also furnish as a corollary that $U$-statistics for halfspaces diverging at different angles are asymptotically independent, and that there is no asymptotic independence for heavy-tailed densities. Using state-of-the-art bounds derived from recent breakthroughs combining Stein's method and Malliavin calculus, we quantify the rate of this convergence in terms of Kolmogorov distance. We also investigate the behavior of local $U$-statistics of a Poisson Process conditioned to lie in diverging halfspace and show how the rate of convergence in the Kolmogorov distance is faster the lighter the tail of the density is." @default.
- W4288043229 created "2022-07-27" @default.
- W4288043229 creator A5078545247 @default.
- W4288043229 date "2022-07-22" @default.
- W4288043229 modified "2023-09-24" @default.
- W4288043229 title "Central limit theorems and asymptotic independence for local $U$-statistics on diverging halfspaces" @default.
- W4288043229 doi "https://doi.org/10.48550/arxiv.2207.11142" @default.
- W4288043229 hasPublicationYear "2022" @default.
- W4288043229 type Work @default.
- W4288043229 citedByCount "0" @default.
- W4288043229 crossrefType "posted-content" @default.
- W4288043229 hasAuthorship W4288043229A5078545247 @default.
- W4288043229 hasBestOaLocation W42880432291 @default.
- W4288043229 hasConcept C100906024 @default.
- W4288043229 hasConcept C105795698 @default.
- W4288043229 hasConcept C114614502 @default.
- W4288043229 hasConcept C134306372 @default.
- W4288043229 hasConcept C151201525 @default.
- W4288043229 hasConcept C166785042 @default.
- W4288043229 hasConcept C33923547 @default.
- W4288043229 hasConcept C35651441 @default.
- W4288043229 hasConcept C88871306 @default.
- W4288043229 hasConceptScore W4288043229C100906024 @default.
- W4288043229 hasConceptScore W4288043229C105795698 @default.
- W4288043229 hasConceptScore W4288043229C114614502 @default.
- W4288043229 hasConceptScore W4288043229C134306372 @default.
- W4288043229 hasConceptScore W4288043229C151201525 @default.
- W4288043229 hasConceptScore W4288043229C166785042 @default.
- W4288043229 hasConceptScore W4288043229C33923547 @default.
- W4288043229 hasConceptScore W4288043229C35651441 @default.
- W4288043229 hasConceptScore W4288043229C88871306 @default.
- W4288043229 hasLocation W42880432291 @default.
- W4288043229 hasOpenAccess W4288043229 @default.
- W4288043229 hasPrimaryLocation W42880432291 @default.
- W4288043229 hasRelatedWork W2049231742 @default.
- W4288043229 hasRelatedWork W2436187474 @default.
- W4288043229 hasRelatedWork W2607081143 @default.
- W4288043229 hasRelatedWork W2769873724 @default.
- W4288043229 hasRelatedWork W2949226773 @default.
- W4288043229 hasRelatedWork W3087922669 @default.
- W4288043229 hasRelatedWork W3122888083 @default.
- W4288043229 hasRelatedWork W4297908044 @default.
- W4288043229 hasRelatedWork W4311645541 @default.
- W4288043229 hasRelatedWork W4313448309 @default.
- W4288043229 isParatext "false" @default.
- W4288043229 isRetracted "false" @default.
- W4288043229 workType "article" @default.