Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288043493> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4288043493 abstract "A variety of statistical and machine learning methods are used to model crash frequency on specific roadways with machine learning methods generally having a higher prediction accuracy. Recently, heterogeneous ensemble methods (HEM), including stacking, have emerged as more accurate and robust intelligent techniques and are often used to solve pattern recognition problems by providing more reliable and accurate predictions. In this study, we apply one of the key HEM methods, Stacking, to model crash frequency on five lane undivided segments (5T) of urban and suburban arterials. The prediction performance of Stacking is compared with parametric statistical models (Poisson and negative binomial) and three state of the art machine learning techniques (Decision tree, random forest, and gradient boosting), each of which is termed as the base learner. By employing an optimal weight scheme to combine individual base learners through stacking, the problem of biased predictions in individual base-learners due to differences in specifications and prediction accuracies is avoided. Data including crash, traffic, and roadway inventory were collected and integrated from 2013 to 2017. The data are split into training, validation, and testing datasets. Estimation results of statistical models reveal that besides other factors, crashes increase with density (number per mile) of different types of driveways. Comparison of out-of-sample predictions of various models confirms the superiority of Stacking over the alternative methods considered. From a practical standpoint, stacking can enhance prediction accuracy (compared to using only one base learner with a particular specification). When applied systemically, stacking can help identify more appropriate countermeasures." @default.
- W4288043493 created "2022-07-27" @default.
- W4288043493 creator A5032807312 @default.
- W4288043493 creator A5039155779 @default.
- W4288043493 creator A5088378121 @default.
- W4288043493 date "2022-07-21" @default.
- W4288043493 modified "2023-09-29" @default.
- W4288043493 title "Heterogeneous Ensemble Learning for Enhanced Crash Forecasts -- A Frequentest and Machine Learning based Stacking Framework" @default.
- W4288043493 doi "https://doi.org/10.48550/arxiv.2207.10721" @default.
- W4288043493 hasPublicationYear "2022" @default.
- W4288043493 type Work @default.
- W4288043493 citedByCount "0" @default.
- W4288043493 crossrefType "posted-content" @default.
- W4288043493 hasAuthorship W4288043493A5032807312 @default.
- W4288043493 hasAuthorship W4288043493A5039155779 @default.
- W4288043493 hasAuthorship W4288043493A5088378121 @default.
- W4288043493 hasBestOaLocation W42880434931 @default.
- W4288043493 hasConcept C105795698 @default.
- W4288043493 hasConcept C117251300 @default.
- W4288043493 hasConcept C119857082 @default.
- W4288043493 hasConcept C121332964 @default.
- W4288043493 hasConcept C124101348 @default.
- W4288043493 hasConcept C154945302 @default.
- W4288043493 hasConcept C169258074 @default.
- W4288043493 hasConcept C183469790 @default.
- W4288043493 hasConcept C199360897 @default.
- W4288043493 hasConcept C33347731 @default.
- W4288043493 hasConcept C33923547 @default.
- W4288043493 hasConcept C41008148 @default.
- W4288043493 hasConcept C45942800 @default.
- W4288043493 hasConcept C46141821 @default.
- W4288043493 hasConcept C84525736 @default.
- W4288043493 hasConceptScore W4288043493C105795698 @default.
- W4288043493 hasConceptScore W4288043493C117251300 @default.
- W4288043493 hasConceptScore W4288043493C119857082 @default.
- W4288043493 hasConceptScore W4288043493C121332964 @default.
- W4288043493 hasConceptScore W4288043493C124101348 @default.
- W4288043493 hasConceptScore W4288043493C154945302 @default.
- W4288043493 hasConceptScore W4288043493C169258074 @default.
- W4288043493 hasConceptScore W4288043493C183469790 @default.
- W4288043493 hasConceptScore W4288043493C199360897 @default.
- W4288043493 hasConceptScore W4288043493C33347731 @default.
- W4288043493 hasConceptScore W4288043493C33923547 @default.
- W4288043493 hasConceptScore W4288043493C41008148 @default.
- W4288043493 hasConceptScore W4288043493C45942800 @default.
- W4288043493 hasConceptScore W4288043493C46141821 @default.
- W4288043493 hasConceptScore W4288043493C84525736 @default.
- W4288043493 hasLocation W42880434931 @default.
- W4288043493 hasOpenAccess W4288043493 @default.
- W4288043493 hasPrimaryLocation W42880434931 @default.
- W4288043493 hasRelatedWork W2188759683 @default.
- W4288043493 hasRelatedWork W3126015411 @default.
- W4288043493 hasRelatedWork W3170784702 @default.
- W4288043493 hasRelatedWork W3204641204 @default.
- W4288043493 hasRelatedWork W4200196661 @default.
- W4288043493 hasRelatedWork W4205478082 @default.
- W4288043493 hasRelatedWork W4249746146 @default.
- W4288043493 hasRelatedWork W4283016678 @default.
- W4288043493 hasRelatedWork W4293069612 @default.
- W4288043493 hasRelatedWork W4298012357 @default.
- W4288043493 isParatext "false" @default.
- W4288043493 isRetracted "false" @default.
- W4288043493 workType "article" @default.