Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045143> ?p ?o ?g. }
- W4288045143 endingPage "119519" @default.
- W4288045143 startingPage "119519" @default.
- W4288045143 abstract "Recently, there has been significant interest in measuring time-varying functional connectivity (TVC) between different brain regions using resting-state functional magnetic resonance imaging (rs-fMRI) data. One way to assess the relationship between signals from different brain regions is to measure their phase synchronization (PS) across time. However, this requires the a priori choice of type and cut-off frequencies for the bandpass filter needed to perform the analysis. Here we explore alternative approaches based on the use of various mode decomposition (MD) techniques that provide a more data driven solution to this issue. These techniques allow for the data driven decomposition of signals jointly into narrow-band components at different frequencies, thus fulfilling the requirements needed to measure PS. We explore several variants of MD, including empirical mode decomposition (EMD), bivariate EMD (BEMD), noise-assisted multivariate EMD (na-MEMD), and introduce the use of multivariate variational mode decomposition (MVMD) in the context of estimating time-varying PS. We contrast the approaches using a series of simulations and application to rs-fMRI data. Our results show that MVMD outperforms other evaluated MD approaches, and further suggests that this approach can be used as a tool to reliably investigate time-varying PS in rs-fMRI data." @default.
- W4288045143 created "2022-07-27" @default.
- W4288045143 creator A5010490290 @default.
- W4288045143 creator A5045394227 @default.
- W4288045143 date "2022-11-01" @default.
- W4288045143 modified "2023-10-14" @default.
- W4288045143 title "Mode decomposition-based time-varying phase synchronization for fMRI" @default.
- W4288045143 cites W152769478 @default.
- W4288045143 cites W1552598564 @default.
- W4288045143 cites W1669444220 @default.
- W4288045143 cites W1921779474 @default.
- W4288045143 cites W1964625711 @default.
- W4288045143 cites W1966523973 @default.
- W4288045143 cites W1973048907 @default.
- W4288045143 cites W1976623182 @default.
- W4288045143 cites W1979732575 @default.
- W4288045143 cites W1980262550 @default.
- W4288045143 cites W1983208069 @default.
- W4288045143 cites W1986387796 @default.
- W4288045143 cites W1993053013 @default.
- W4288045143 cites W1999850435 @default.
- W4288045143 cites W2000261957 @default.
- W4288045143 cites W2000982976 @default.
- W4288045143 cites W2003148418 @default.
- W4288045143 cites W2007221293 @default.
- W4288045143 cites W2007894316 @default.
- W4288045143 cites W2019288483 @default.
- W4288045143 cites W2024729467 @default.
- W4288045143 cites W2037035617 @default.
- W4288045143 cites W2041325253 @default.
- W4288045143 cites W2051224630 @default.
- W4288045143 cites W2052745931 @default.
- W4288045143 cites W2054804568 @default.
- W4288045143 cites W2062377622 @default.
- W4288045143 cites W2064222587 @default.
- W4288045143 cites W2066313169 @default.
- W4288045143 cites W2069908974 @default.
- W4288045143 cites W2077664060 @default.
- W4288045143 cites W2078880430 @default.
- W4288045143 cites W2096672020 @default.
- W4288045143 cites W2098395403 @default.
- W4288045143 cites W2101809190 @default.
- W4288045143 cites W2105880556 @default.
- W4288045143 cites W2117506585 @default.
- W4288045143 cites W2117621792 @default.
- W4288045143 cites W2118366819 @default.
- W4288045143 cites W2120390927 @default.
- W4288045143 cites W2123754499 @default.
- W4288045143 cites W2126156582 @default.
- W4288045143 cites W2134608917 @default.
- W4288045143 cites W2138092999 @default.
- W4288045143 cites W2138402108 @default.
- W4288045143 cites W2145403933 @default.
- W4288045143 cites W2150023439 @default.
- W4288045143 cites W2151374846 @default.
- W4288045143 cites W2157446241 @default.
- W4288045143 cites W2160097539 @default.
- W4288045143 cites W2169721303 @default.
- W4288045143 cites W2170702893 @default.
- W4288045143 cites W2171167603 @default.
- W4288045143 cites W2568376170 @default.
- W4288045143 cites W2733595594 @default.
- W4288045143 cites W2747122029 @default.
- W4288045143 cites W2759001423 @default.
- W4288045143 cites W2761794492 @default.
- W4288045143 cites W2765216222 @default.
- W4288045143 cites W2790817249 @default.
- W4288045143 cites W2808553959 @default.
- W4288045143 cites W2909259044 @default.
- W4288045143 cites W2913611036 @default.
- W4288045143 cites W2922079472 @default.
- W4288045143 cites W2951907087 @default.
- W4288045143 cites W2952877979 @default.
- W4288045143 cites W2958872067 @default.
- W4288045143 cites W2995313551 @default.
- W4288045143 cites W3035554944 @default.
- W4288045143 cites W3037665454 @default.
- W4288045143 cites W3043952856 @default.
- W4288045143 cites W3048656223 @default.
- W4288045143 cites W3113957580 @default.
- W4288045143 cites W3120042123 @default.
- W4288045143 cites W3128472743 @default.
- W4288045143 cites W3200461113 @default.
- W4288045143 cites W368078881 @default.
- W4288045143 cites W4299552129 @default.
- W4288045143 cites W4361980669 @default.
- W4288045143 cites W4376849658 @default.
- W4288045143 cites W61705880 @default.
- W4288045143 cites W3141408015 @default.
- W4288045143 doi "https://doi.org/10.1016/j.neuroimage.2022.119519" @default.
- W4288045143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35905810" @default.
- W4288045143 hasPublicationYear "2022" @default.
- W4288045143 type Work @default.
- W4288045143 citedByCount "1" @default.
- W4288045143 countsByYear W42880451432023 @default.
- W4288045143 crossrefType "journal-article" @default.
- W4288045143 hasAuthorship W4288045143A5010490290 @default.
- W4288045143 hasAuthorship W4288045143A5045394227 @default.