Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045170> ?p ?o ?g. }
- W4288045170 endingPage "111655" @default.
- W4288045170 startingPage "111655" @default.
- W4288045170 abstract "For autonomous driving systems, vehicle detection is an important part and challenging problem due to the complex traffic scenes and poor computing resources. This paper proposes an improved SSD(single shot mutlibox detector) algorithm for the fast detection of vehicles in traffic scenes. MobileNet v2 is selected as the backbone feature extraction network for SSD, which improves the real-time performance of the algorithm. To improve detection accuracy, the channel attention mechanism is utilized for feature weighting, and the deconvolution module is utilized to construct a bottom–top feature fusion structure. The experimental results show that the average precision of the proposed algorithm on the BDD100K and KITTI datasets is 82.59% and 84.83%, respectively. The single inference time of the algorithm is 73ms, which is only about 5/11 of the original model, realizing the improvement of inference speed and prediction accuracy." @default.
- W4288045170 created "2022-07-27" @default.
- W4288045170 creator A5001954747 @default.
- W4288045170 creator A5009884297 @default.
- W4288045170 creator A5028149360 @default.
- W4288045170 creator A5033697126 @default.
- W4288045170 creator A5038497006 @default.
- W4288045170 creator A5063986446 @default.
- W4288045170 creator A5067871946 @default.
- W4288045170 date "2022-09-01" @default.
- W4288045170 modified "2023-10-18" @default.
- W4288045170 title "Fast vehicle detection algorithm in traffic scene based on improved SSD" @default.
- W4288045170 cites W1410687309 @default.
- W4288045170 cites W2405334833 @default.
- W4288045170 cites W2589615404 @default.
- W4288045170 cites W2770074362 @default.
- W4288045170 cites W2893538180 @default.
- W4288045170 cites W2963420686 @default.
- W4288045170 cites W2963809933 @default.
- W4288045170 cites W2989904326 @default.
- W4288045170 cites W2994881943 @default.
- W4288045170 cites W3000685358 @default.
- W4288045170 cites W3024207815 @default.
- W4288045170 cites W3028459556 @default.
- W4288045170 cites W3084133296 @default.
- W4288045170 cites W3094841529 @default.
- W4288045170 cites W3111364346 @default.
- W4288045170 cites W3112288498 @default.
- W4288045170 cites W3117355778 @default.
- W4288045170 cites W3122939190 @default.
- W4288045170 cites W3135688577 @default.
- W4288045170 cites W3175481731 @default.
- W4288045170 cites W3193581568 @default.
- W4288045170 cites W3194040541 @default.
- W4288045170 cites W3194117749 @default.
- W4288045170 cites W3195116950 @default.
- W4288045170 cites W3201146954 @default.
- W4288045170 cites W3203938210 @default.
- W4288045170 cites W3205751049 @default.
- W4288045170 cites W639708223 @default.
- W4288045170 cites W974261621 @default.
- W4288045170 doi "https://doi.org/10.1016/j.measurement.2022.111655" @default.
- W4288045170 hasPublicationYear "2022" @default.
- W4288045170 type Work @default.
- W4288045170 citedByCount "19" @default.
- W4288045170 countsByYear W42880451702022 @default.
- W4288045170 countsByYear W42880451702023 @default.
- W4288045170 crossrefType "journal-article" @default.
- W4288045170 hasAuthorship W4288045170A5001954747 @default.
- W4288045170 hasAuthorship W4288045170A5009884297 @default.
- W4288045170 hasAuthorship W4288045170A5028149360 @default.
- W4288045170 hasAuthorship W4288045170A5033697126 @default.
- W4288045170 hasAuthorship W4288045170A5038497006 @default.
- W4288045170 hasAuthorship W4288045170A5063986446 @default.
- W4288045170 hasAuthorship W4288045170A5067871946 @default.
- W4288045170 hasBestOaLocation W42880451701 @default.
- W4288045170 hasConcept C11413529 @default.
- W4288045170 hasConcept C120665830 @default.
- W4288045170 hasConcept C121332964 @default.
- W4288045170 hasConcept C126838900 @default.
- W4288045170 hasConcept C127162648 @default.
- W4288045170 hasConcept C138885662 @default.
- W4288045170 hasConcept C153180895 @default.
- W4288045170 hasConcept C154945302 @default.
- W4288045170 hasConcept C174576160 @default.
- W4288045170 hasConcept C183115368 @default.
- W4288045170 hasConcept C2776151529 @default.
- W4288045170 hasConcept C2776214188 @default.
- W4288045170 hasConcept C2776401178 @default.
- W4288045170 hasConcept C3019835501 @default.
- W4288045170 hasConcept C31258907 @default.
- W4288045170 hasConcept C31972630 @default.
- W4288045170 hasConcept C41008148 @default.
- W4288045170 hasConcept C41895202 @default.
- W4288045170 hasConcept C52622490 @default.
- W4288045170 hasConcept C71924100 @default.
- W4288045170 hasConcept C76155785 @default.
- W4288045170 hasConcept C94915269 @default.
- W4288045170 hasConceptScore W4288045170C11413529 @default.
- W4288045170 hasConceptScore W4288045170C120665830 @default.
- W4288045170 hasConceptScore W4288045170C121332964 @default.
- W4288045170 hasConceptScore W4288045170C126838900 @default.
- W4288045170 hasConceptScore W4288045170C127162648 @default.
- W4288045170 hasConceptScore W4288045170C138885662 @default.
- W4288045170 hasConceptScore W4288045170C153180895 @default.
- W4288045170 hasConceptScore W4288045170C154945302 @default.
- W4288045170 hasConceptScore W4288045170C174576160 @default.
- W4288045170 hasConceptScore W4288045170C183115368 @default.
- W4288045170 hasConceptScore W4288045170C2776151529 @default.
- W4288045170 hasConceptScore W4288045170C2776214188 @default.
- W4288045170 hasConceptScore W4288045170C2776401178 @default.
- W4288045170 hasConceptScore W4288045170C3019835501 @default.
- W4288045170 hasConceptScore W4288045170C31258907 @default.
- W4288045170 hasConceptScore W4288045170C31972630 @default.
- W4288045170 hasConceptScore W4288045170C41008148 @default.
- W4288045170 hasConceptScore W4288045170C41895202 @default.
- W4288045170 hasConceptScore W4288045170C52622490 @default.
- W4288045170 hasConceptScore W4288045170C71924100 @default.