Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045186> ?p ?o ?g. }
- W4288045186 endingPage "119522" @default.
- W4288045186 startingPage "119522" @default.
- W4288045186 abstract "Recently, deep neural networks have shown great potential for solving dipole inversion of quantitative susceptibility mapping (QSM) with improved results. However, these studies utilized their limited dataset for network training and inference, which may lead to untrustworthy conclusions. Thus, a common dataset is needed for a fair comparison between different QSM reconstruction networks. Additionally, finding an in vivo reference susceptibility map that matches acquired single-orientation phase data remains an open problem. Susceptibility tensor imaging (STI) χ33 and Calculation of Susceptibility through Multiple Orientation Sampling (COSMOS) are considered reference susceptibility candidates. However, a large number of multi-orientation GRE data for both STI and COSMOS reconstruction are now unavailable for training supervised neural networks for QSM. In this study, we reported the largest multi-orientation dataset, to the best of our knowledge in the QSM research field, with a total of 144 scans from 8 healthy subjects collected using a 3D GRE sequence from the same MR scanner. In addition, the parcellation of deep gray matter is also provided for automatically extracting susceptibility values. Five recently developed deep neural networks, i.e., xQSM, QSMnet, autoQSM, LPCNN, and MoDL-QSM were performed on this dataset. This potential data source could provide a common framework and labels to test the accuracy and robustness of deep neural networks for QSM reconstruction. This dataset has the potential to provide a benchmark of reference susceptibility for the deep learning-based QSM methods. Additionally, the trained COSMOS-labeled and χ33-labeled networks were tested on the pathological data to explore their potential applications. The data together with deep gray matter parcellation maps are now publicly available via an open repository at https://osf.io/yfms7/, and the raw multi-orientation GRE data are also available at https://osf.io/y6rc3/." @default.
- W4288045186 created "2022-07-27" @default.
- W4288045186 creator A5009238720 @default.
- W4288045186 creator A5027081164 @default.
- W4288045186 creator A5034981004 @default.
- W4288045186 creator A5038607639 @default.
- W4288045186 creator A5058095576 @default.
- W4288045186 creator A5048224914 @default.
- W4288045186 date "2022-11-01" @default.
- W4288045186 modified "2023-10-17" @default.
- W4288045186 title "Towards in vivo ground truth susceptibility for single-orientation deep learning QSM: A multi-orientation gradient-echo MRI dataset" @default.
- W4288045186 cites W1485368148 @default.
- W4288045186 cites W1524193722 @default.
- W4288045186 cites W1972877268 @default.
- W4288045186 cites W1974155908 @default.
- W4288045186 cites W1986728683 @default.
- W4288045186 cites W1999357437 @default.
- W4288045186 cites W2000104977 @default.
- W4288045186 cites W2019035911 @default.
- W4288045186 cites W2021116037 @default.
- W4288045186 cites W2025875649 @default.
- W4288045186 cites W2026054523 @default.
- W4288045186 cites W2029347131 @default.
- W4288045186 cites W2050900769 @default.
- W4288045186 cites W2054029860 @default.
- W4288045186 cites W2061180483 @default.
- W4288045186 cites W2062469963 @default.
- W4288045186 cites W2063611149 @default.
- W4288045186 cites W2071881327 @default.
- W4288045186 cites W2072579321 @default.
- W4288045186 cites W2091422377 @default.
- W4288045186 cites W2096111103 @default.
- W4288045186 cites W2113232588 @default.
- W4288045186 cites W2124048246 @default.
- W4288045186 cites W2126681103 @default.
- W4288045186 cites W2133665775 @default.
- W4288045186 cites W2142921985 @default.
- W4288045186 cites W2148726987 @default.
- W4288045186 cites W2152166807 @default.
- W4288045186 cites W2152374117 @default.
- W4288045186 cites W2168668658 @default.
- W4288045186 cites W2207558743 @default.
- W4288045186 cites W2341860159 @default.
- W4288045186 cites W2741826558 @default.
- W4288045186 cites W2784045879 @default.
- W4288045186 cites W2791695392 @default.
- W4288045186 cites W2897364450 @default.
- W4288045186 cites W2929714440 @default.
- W4288045186 cites W2966280437 @default.
- W4288045186 cites W2990133153 @default.
- W4288045186 cites W3005057770 @default.
- W4288045186 cites W3008668856 @default.
- W4288045186 cites W3012663063 @default.
- W4288045186 cites W3116759256 @default.
- W4288045186 cites W3129588995 @default.
- W4288045186 cites W3161184850 @default.
- W4288045186 cites W3168587207 @default.
- W4288045186 cites W3177540801 @default.
- W4288045186 cites W4235770099 @default.
- W4288045186 doi "https://doi.org/10.1016/j.neuroimage.2022.119522" @default.
- W4288045186 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35905811" @default.
- W4288045186 hasPublicationYear "2022" @default.
- W4288045186 type Work @default.
- W4288045186 citedByCount "1" @default.
- W4288045186 countsByYear W42880451862023 @default.
- W4288045186 crossrefType "journal-article" @default.
- W4288045186 hasAuthorship W4288045186A5009238720 @default.
- W4288045186 hasAuthorship W4288045186A5027081164 @default.
- W4288045186 hasAuthorship W4288045186A5034981004 @default.
- W4288045186 hasAuthorship W4288045186A5038607639 @default.
- W4288045186 hasAuthorship W4288045186A5048224914 @default.
- W4288045186 hasAuthorship W4288045186A5058095576 @default.
- W4288045186 hasBestOaLocation W42880451861 @default.
- W4288045186 hasConcept C108583219 @default.
- W4288045186 hasConcept C126838900 @default.
- W4288045186 hasConcept C143409427 @default.
- W4288045186 hasConcept C146849305 @default.
- W4288045186 hasConcept C153180895 @default.
- W4288045186 hasConcept C154945302 @default.
- W4288045186 hasConcept C16345878 @default.
- W4288045186 hasConcept C2524010 @default.
- W4288045186 hasConcept C29022207 @default.
- W4288045186 hasConcept C33923547 @default.
- W4288045186 hasConcept C41008148 @default.
- W4288045186 hasConcept C50644808 @default.
- W4288045186 hasConcept C71924100 @default.
- W4288045186 hasConceptScore W4288045186C108583219 @default.
- W4288045186 hasConceptScore W4288045186C126838900 @default.
- W4288045186 hasConceptScore W4288045186C143409427 @default.
- W4288045186 hasConceptScore W4288045186C146849305 @default.
- W4288045186 hasConceptScore W4288045186C153180895 @default.
- W4288045186 hasConceptScore W4288045186C154945302 @default.
- W4288045186 hasConceptScore W4288045186C16345878 @default.
- W4288045186 hasConceptScore W4288045186C2524010 @default.
- W4288045186 hasConceptScore W4288045186C29022207 @default.
- W4288045186 hasConceptScore W4288045186C33923547 @default.
- W4288045186 hasConceptScore W4288045186C41008148 @default.
- W4288045186 hasConceptScore W4288045186C50644808 @default.