Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045210> ?p ?o ?g. }
- W4288045210 endingPage "3854.e3" @default.
- W4288045210 startingPage "3847" @default.
- W4288045210 abstract "Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons1Rudomin P. Schmidt R.F. Presynaptic inhibition in the vertebrate spinal cord revisited.Exp. Brain Res. 1999; 129: 1-37Crossref PubMed Scopus (594) Google Scholar, 2Stein W. Schmitz J. Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors.J. Neurophysiol. 1999; 82: 512-514Crossref PubMed Scopus (26) Google Scholar, 3Fink A.J. Croce K.R. Huang Z.J. Abbott L.F. Jessell T.M. Azim E. Presynaptic inhibition of spinal sensory feedback ensures smooth movement.Nature. 2014; 509: 43-48https://doi.org/10.1038/nature13276Crossref PubMed Scopus (153) Google Scholar, 4Clarac F. Cattaert D. Invertebrate presynaptic inhibition and motor control.Exp. Brain Res. 1996; 112: 163-180Crossref PubMed Scopus (61) Google Scholar and afferents of different modalities targeting the same motor neurons (MNs)5Gebehart C. Büschges A. Temporal differences between load and movement signal integration in the sensorimotor network of an insect Leg.J. Neurophysiol. 2021; 126: 1875-1890https://doi.org/10.1152/jn.00399.2021Crossref PubMed Scopus (2) Google Scholar, 6Schmitz J. Stein W. Convergence of load and movement information onto leg motoneurons in insects.J. Neurobiol. 2000; 42: 424-436Crossref PubMed Scopus (26) Google Scholar, 7Burrows M. The Neurobiology of An Insect Brain. Oxford University Press, 1996https://doi.org/10.1093/acprof:oso/9780198523444.001.0001Crossref Google Scholar underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system,6Schmitz J. Stein W. Convergence of load and movement information onto leg motoneurons in insects.J. Neurobiol. 2000; 42: 424-436Crossref PubMed Scopus (26) Google Scholar,8Gebehart C. Schmidt J. Büschges A. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint.J. Neurophysiol. 2021; 125: 1800-1813https://doi.org/10.1152/jn.00090.2021Crossref PubMed Scopus (0) Google Scholar, 9Bässler U. Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus∗.Biol. Cybern. 1976; 24: 47-49Crossref Scopus (89) Google Scholar, 10Driesang R.B. Büschges A. Physiological changes in central neuronal pathways contributing to the generation of a reflex reversal.J. Comp. Physiol. A. 1996; 179: 45-57Crossref Scopus (35) Google Scholar, 11Hellekes K. Blincow E. Hoffmann J. Büschges A. Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction, and optomotor-induced turning.J. Neurophysiol. 2012; 107: 239-249https://doi.org/10.1152/jn.00718.2011Crossref PubMed Scopus (49) Google Scholar, 12Akay T. Ludwar B.C. Göritz M.L. Schmitz J. Büschges A. Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.J. Neurosci. 2007; 27: 3285-3294https://doi.org/10.1523/JNEUROSCI.5202-06.2007Crossref PubMed Scopus (74) Google Scholar and both inputs feed into a network of premotor nonspiking interneurons (NSIs).8Gebehart C. Schmidt J. Büschges A. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint.J. Neurophysiol. 2021; 125: 1800-1813https://doi.org/10.1152/jn.00090.2021Crossref PubMed Scopus (0) Google Scholar We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement13Bidaye S.S. Bockemühl T. Büschges A. Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.J. Neurophysiol. 2018; 119: 459-475https://doi.org/10.1152/jn.00658.2017Crossref PubMed Scopus (90) Google Scholar, 14Field L.H. Matheson T. Chordotonal organs of insects.in: Evans P. Adv. Insect Physiol. Academic Press, 1998: 1-228Crossref Scopus (281) Google Scholar, 15Tuthill J.C. Wilson R.I. Mechanosensation and adaptive motor control in insects.Curr. Biol. 2016; 26: R1022-R1038https://doi.org/10.1016/j.cub.2016.06.070Abstract Full Text Full Text PDF PubMed Scopus (134) Google Scholar (femoral chordotonal organ [fCO]) and load13Bidaye S.S. Bockemühl T. Büschges A. Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms.J. Neurophysiol. 2018; 119: 459-475https://doi.org/10.1152/jn.00658.2017Crossref PubMed Scopus (90) Google Scholar,15Tuthill J.C. Wilson R.I. Mechanosensation and adaptive motor control in insects.Curr. Biol. 2016; 26: R1022-R1038https://doi.org/10.1016/j.cub.2016.06.070Abstract Full Text Full Text PDF PubMed Scopus (134) Google Scholar,16Zill S. Schmitz J. Büschges A. Load sensing and control of posture and locomotion.Arthropod Struct. Dev. 2004; 33: 273-286https://doi.org/10.1016/j.asd.2004.05.005Crossref PubMed Scopus (143) Google Scholar (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals.17Bässler U. The femur-tibia control system of stick insects - a model system for the study of the neural basis of joint control.Brain Res. Brain Res. Rev. 1993; 18: 207-226Crossref PubMed Scopus (110) Google Scholar, 18Kittmann R. Neural mechanisms of adaptive gain control in a joint control loop: muscle force and motoneuronal activity.J. Exp. Biol. 1997; 200: 1383-1402Crossref PubMed Google Scholar, 19Büschges A. Kittmann R. Schmitz J. Identified nonspiking interneurons in leg reflexes and during walking in the stick insect.J. Comp. Physiol. 1994; 174: 685-700Crossref Scopus (62) Google Scholar On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity." @default.
- W4288045210 created "2022-07-27" @default.
- W4288045210 creator A5050318328 @default.
- W4288045210 creator A5058144711 @default.
- W4288045210 creator A5058648019 @default.
- W4288045210 date "2022-09-01" @default.
- W4288045210 modified "2023-10-10" @default.
- W4288045210 title "Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg" @default.
- W4288045210 cites W1492297820 @default.
- W4288045210 cites W1529859938 @default.
- W4288045210 cites W1559338925 @default.
- W4288045210 cites W1642768284 @default.
- W4288045210 cites W1891625644 @default.
- W4288045210 cites W1906317008 @default.
- W4288045210 cites W1922561849 @default.
- W4288045210 cites W1970708868 @default.
- W4288045210 cites W1970986072 @default.
- W4288045210 cites W1975682877 @default.
- W4288045210 cites W1977284812 @default.
- W4288045210 cites W1977404108 @default.
- W4288045210 cites W1981163091 @default.
- W4288045210 cites W1988355158 @default.
- W4288045210 cites W1998055728 @default.
- W4288045210 cites W1998552863 @default.
- W4288045210 cites W1999931731 @default.
- W4288045210 cites W2000102715 @default.
- W4288045210 cites W2007560803 @default.
- W4288045210 cites W2015883647 @default.
- W4288045210 cites W2026917580 @default.
- W4288045210 cites W2028378149 @default.
- W4288045210 cites W2034704723 @default.
- W4288045210 cites W2047789135 @default.
- W4288045210 cites W2055171682 @default.
- W4288045210 cites W2062365428 @default.
- W4288045210 cites W2063406449 @default.
- W4288045210 cites W2067511566 @default.
- W4288045210 cites W2073553329 @default.
- W4288045210 cites W2074941812 @default.
- W4288045210 cites W2077081012 @default.
- W4288045210 cites W2078621349 @default.
- W4288045210 cites W2079907981 @default.
- W4288045210 cites W2080396235 @default.
- W4288045210 cites W2080677739 @default.
- W4288045210 cites W2087172394 @default.
- W4288045210 cites W2090313082 @default.
- W4288045210 cites W2094208797 @default.
- W4288045210 cites W2121216085 @default.
- W4288045210 cites W2122538566 @default.
- W4288045210 cites W2126656766 @default.
- W4288045210 cites W2130909945 @default.
- W4288045210 cites W2131120145 @default.
- W4288045210 cites W2135748236 @default.
- W4288045210 cites W2136658512 @default.
- W4288045210 cites W2137620073 @default.
- W4288045210 cites W2139906656 @default.
- W4288045210 cites W2145087239 @default.
- W4288045210 cites W2145384795 @default.
- W4288045210 cites W2145458445 @default.
- W4288045210 cites W2147690681 @default.
- W4288045210 cites W2149700585 @default.
- W4288045210 cites W2151217203 @default.
- W4288045210 cites W2157411822 @default.
- W4288045210 cites W2165542509 @default.
- W4288045210 cites W2168071184 @default.
- W4288045210 cites W2273916944 @default.
- W4288045210 cites W2315846806 @default.
- W4288045210 cites W2345104019 @default.
- W4288045210 cites W2401013695 @default.
- W4288045210 cites W2533765953 @default.
- W4288045210 cites W2584819157 @default.
- W4288045210 cites W2724137653 @default.
- W4288045210 cites W2766255495 @default.
- W4288045210 cites W2771099696 @default.
- W4288045210 cites W2773217643 @default.
- W4288045210 cites W2807753712 @default.
- W4288045210 cites W2811119034 @default.
- W4288045210 cites W2888657694 @default.
- W4288045210 cites W2897038321 @default.
- W4288045210 cites W2900493819 @default.
- W4288045210 cites W2938081099 @default.
- W4288045210 cites W2951628200 @default.
- W4288045210 cites W2972514463 @default.
- W4288045210 cites W2976253138 @default.
- W4288045210 cites W3108277554 @default.
- W4288045210 cites W3149126346 @default.
- W4288045210 cites W3158300028 @default.
- W4288045210 cites W3200789412 @default.
- W4288045210 cites W3210736590 @default.
- W4288045210 cites W846657406 @default.
- W4288045210 doi "https://doi.org/10.1016/j.cub.2022.07.005" @default.
- W4288045210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35896118" @default.
- W4288045210 hasPublicationYear "2022" @default.
- W4288045210 type Work @default.
- W4288045210 citedByCount "0" @default.
- W4288045210 crossrefType "journal-article" @default.
- W4288045210 hasAuthorship W4288045210A5050318328 @default.
- W4288045210 hasAuthorship W4288045210A5058144711 @default.
- W4288045210 hasAuthorship W4288045210A5058648019 @default.