Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045217> ?p ?o ?g. }
- W4288045217 endingPage "111653" @default.
- W4288045217 startingPage "111653" @default.
- W4288045217 abstract "In this paper, semantic segmentation networks such as UNet and DeepLabV3+ are evaluated and compared against Random Forest and Support Vector Machines in the field of step-heating active infrared thermography for subsurface defect detection and localization. To collect information from an entire digital recording sequence into a particular image, post-processing methods such as PCT, PPT, Kurtosis, Skewness and TSR are used. Two datasets are created, one with 3-channel images using PCT, and one using all the above post-processing methods to condense the heating and cooling processes into 30-channel images. This evaluation study shows that DeepLabV3+ is able to detect most defects in specimens with a similar structure to training samples without false positives even for defects of different depth and area. UNet requires the use of 30-channel images to achieve results closer to DeepLabV3+. Random Forest and Support Vector Machines are unable to compete with the recent methods as they are unable to detect defects correctly." @default.
- W4288045217 created "2022-07-27" @default.
- W4288045217 creator A5029870850 @default.
- W4288045217 creator A5031476067 @default.
- W4288045217 creator A5048722248 @default.
- W4288045217 creator A5050120048 @default.
- W4288045217 creator A5071866538 @default.
- W4288045217 date "2022-08-01" @default.
- W4288045217 modified "2023-10-16" @default.
- W4288045217 title "Semantic segmentation for non-destructive testing with step-heating thermography for composite laminates" @default.
- W4288045217 cites W1972316953 @default.
- W4288045217 cites W1982104027 @default.
- W4288045217 cites W2000523966 @default.
- W4288045217 cites W2025746223 @default.
- W4288045217 cites W2048293496 @default.
- W4288045217 cites W2093404073 @default.
- W4288045217 cites W2412782625 @default.
- W4288045217 cites W2752238612 @default.
- W4288045217 cites W2760951344 @default.
- W4288045217 cites W2768906510 @default.
- W4288045217 cites W2884473836 @default.
- W4288045217 cites W2955272143 @default.
- W4288045217 cites W2963136578 @default.
- W4288045217 cites W2964309882 @default.
- W4288045217 cites W2971101093 @default.
- W4288045217 cites W3010084473 @default.
- W4288045217 cites W3011503342 @default.
- W4288045217 cites W3018717613 @default.
- W4288045217 cites W3041010388 @default.
- W4288045217 cites W3048510781 @default.
- W4288045217 cites W3089524077 @default.
- W4288045217 cites W3152576252 @default.
- W4288045217 cites W3162403620 @default.
- W4288045217 cites W3169067682 @default.
- W4288045217 cites W4214650168 @default.
- W4288045217 cites W821477359 @default.
- W4288045217 doi "https://doi.org/10.1016/j.measurement.2022.111653" @default.
- W4288045217 hasPublicationYear "2022" @default.
- W4288045217 type Work @default.
- W4288045217 citedByCount "3" @default.
- W4288045217 countsByYear W42880452172023 @default.
- W4288045217 crossrefType "journal-article" @default.
- W4288045217 hasAuthorship W4288045217A5029870850 @default.
- W4288045217 hasAuthorship W4288045217A5031476067 @default.
- W4288045217 hasAuthorship W4288045217A5048722248 @default.
- W4288045217 hasAuthorship W4288045217A5050120048 @default.
- W4288045217 hasAuthorship W4288045217A5071866538 @default.
- W4288045217 hasBestOaLocation W42880452171 @default.
- W4288045217 hasConcept C105795698 @default.
- W4288045217 hasConcept C120665830 @default.
- W4288045217 hasConcept C121332964 @default.
- W4288045217 hasConcept C122342681 @default.
- W4288045217 hasConcept C12267149 @default.
- W4288045217 hasConcept C127162648 @default.
- W4288045217 hasConcept C153180895 @default.
- W4288045217 hasConcept C154945302 @default.
- W4288045217 hasConcept C158355884 @default.
- W4288045217 hasConcept C166963901 @default.
- W4288045217 hasConcept C2779222261 @default.
- W4288045217 hasConcept C31972630 @default.
- W4288045217 hasConcept C33923547 @default.
- W4288045217 hasConcept C41008148 @default.
- W4288045217 hasConcept C64869954 @default.
- W4288045217 hasConcept C76155785 @default.
- W4288045217 hasConcept C89600930 @default.
- W4288045217 hasConceptScore W4288045217C105795698 @default.
- W4288045217 hasConceptScore W4288045217C120665830 @default.
- W4288045217 hasConceptScore W4288045217C121332964 @default.
- W4288045217 hasConceptScore W4288045217C122342681 @default.
- W4288045217 hasConceptScore W4288045217C12267149 @default.
- W4288045217 hasConceptScore W4288045217C127162648 @default.
- W4288045217 hasConceptScore W4288045217C153180895 @default.
- W4288045217 hasConceptScore W4288045217C154945302 @default.
- W4288045217 hasConceptScore W4288045217C158355884 @default.
- W4288045217 hasConceptScore W4288045217C166963901 @default.
- W4288045217 hasConceptScore W4288045217C2779222261 @default.
- W4288045217 hasConceptScore W4288045217C31972630 @default.
- W4288045217 hasConceptScore W4288045217C33923547 @default.
- W4288045217 hasConceptScore W4288045217C41008148 @default.
- W4288045217 hasConceptScore W4288045217C64869954 @default.
- W4288045217 hasConceptScore W4288045217C76155785 @default.
- W4288045217 hasConceptScore W4288045217C89600930 @default.
- W4288045217 hasLocation W42880452171 @default.
- W4288045217 hasOpenAccess W4288045217 @default.
- W4288045217 hasPrimaryLocation W42880452171 @default.
- W4288045217 hasRelatedWork W1669643531 @default.
- W4288045217 hasRelatedWork W1982826852 @default.
- W4288045217 hasRelatedWork W2005437358 @default.
- W4288045217 hasRelatedWork W2008656436 @default.
- W4288045217 hasRelatedWork W2023558673 @default.
- W4288045217 hasRelatedWork W2110230079 @default.
- W4288045217 hasRelatedWork W2134924024 @default.
- W4288045217 hasRelatedWork W2517104666 @default.
- W4288045217 hasRelatedWork W2999912646 @default.
- W4288045217 hasRelatedWork W2345184372 @default.
- W4288045217 hasVolume "200" @default.
- W4288045217 isParatext "false" @default.
- W4288045217 isRetracted "false" @default.