Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045224> ?p ?o ?g. }
- W4288045224 endingPage "118261" @default.
- W4288045224 startingPage "118261" @default.
- W4288045224 abstract "In response to the errors caused by the uniform background value coefficients in the traditional grey model and the lack of analysis ability of panel data, this study proposes a two-stage background value calculation method and introduces a spatial weight matrix to employ the spatial correlation of variables in the grey model, creating a spatial grey model SGM(1,1,m) and realizing the modeling of spatial data by a grey model. The validity of the SGM(1,1,m) model was tested using carbon emission data from 30 provinces in China, and the carbon emissions of these provinces are predicted from 2020 to 2025. Conclusions are drawn as follows. First, the two-stage background value optimization mode and the addition of spatial overflow term in the model are reasonable, and the SGM(1,1,m) model improves the modeling performance in a certain sense compared with the GM(1,1) model while realizing regional association modeling. Second, the SGM(1,1,m) model has some formal similarities with the grey multivariate model, but while both are similar in terms of modeling requirements, the modeling purposes or economic meanings represented are different and should not be confused. Third, the SGM(1,1,m) model can achieve modeling predictions while providing a simple analysis of the spatial correlation of carbon emissions. Fourth, the prediction results present that the rise of carbon emissions in eastern China will level off, but the rise of carbon emissions in the central and western China will accelerate, which is largely because of the faster rise of carbon emissions in key provinces such as Shaanxi, Gansu, Ningxia, and Inner Mongolia." @default.
- W4288045224 created "2022-07-27" @default.
- W4288045224 creator A5052813888 @default.
- W4288045224 creator A5071265417 @default.
- W4288045224 date "2022-12-01" @default.
- W4288045224 modified "2023-10-03" @default.
- W4288045224 title "Forecasting Chinese provincial carbon emissions using a novel grey prediction model considering spatial correlation" @default.
- W4288045224 cites W1992665910 @default.
- W4288045224 cites W2117603680 @default.
- W4288045224 cites W2743356708 @default.
- W4288045224 cites W2767648137 @default.
- W4288045224 cites W2790979288 @default.
- W4288045224 cites W2793266273 @default.
- W4288045224 cites W2795378461 @default.
- W4288045224 cites W2797455433 @default.
- W4288045224 cites W2810698648 @default.
- W4288045224 cites W2896173728 @default.
- W4288045224 cites W2897754175 @default.
- W4288045224 cites W2899632751 @default.
- W4288045224 cites W2904599941 @default.
- W4288045224 cites W2911978963 @default.
- W4288045224 cites W2914451237 @default.
- W4288045224 cites W2920162111 @default.
- W4288045224 cites W2921061637 @default.
- W4288045224 cites W2922456124 @default.
- W4288045224 cites W2932492920 @default.
- W4288045224 cites W2941382837 @default.
- W4288045224 cites W2947214013 @default.
- W4288045224 cites W2976176382 @default.
- W4288045224 cites W2990474957 @default.
- W4288045224 cites W3008915080 @default.
- W4288045224 cites W3009344044 @default.
- W4288045224 cites W3017210658 @default.
- W4288045224 cites W3034263303 @default.
- W4288045224 cites W3041065596 @default.
- W4288045224 cites W3047173614 @default.
- W4288045224 cites W3091948705 @default.
- W4288045224 cites W3094828723 @default.
- W4288045224 cites W3114657304 @default.
- W4288045224 cites W3128861855 @default.
- W4288045224 cites W3139019069 @default.
- W4288045224 cites W3158401747 @default.
- W4288045224 cites W3158564889 @default.
- W4288045224 cites W3159031898 @default.
- W4288045224 cites W3159635471 @default.
- W4288045224 cites W3159873881 @default.
- W4288045224 cites W3165249122 @default.
- W4288045224 cites W3172541956 @default.
- W4288045224 cites W3184962297 @default.
- W4288045224 cites W3191244059 @default.
- W4288045224 cites W3197953262 @default.
- W4288045224 cites W3200225643 @default.
- W4288045224 cites W3214199616 @default.
- W4288045224 cites W4200101200 @default.
- W4288045224 cites W4205245734 @default.
- W4288045224 cites W4207004978 @default.
- W4288045224 doi "https://doi.org/10.1016/j.eswa.2022.118261" @default.
- W4288045224 hasPublicationYear "2022" @default.
- W4288045224 type Work @default.
- W4288045224 citedByCount "15" @default.
- W4288045224 countsByYear W42880452242022 @default.
- W4288045224 countsByYear W42880452242023 @default.
- W4288045224 crossrefType "journal-article" @default.
- W4288045224 hasAuthorship W4288045224A5052813888 @default.
- W4288045224 hasAuthorship W4288045224A5071265417 @default.
- W4288045224 hasConcept C105795698 @default.
- W4288045224 hasConcept C117220453 @default.
- W4288045224 hasConcept C138695830 @default.
- W4288045224 hasConcept C149782125 @default.
- W4288045224 hasConcept C150060386 @default.
- W4288045224 hasConcept C159620131 @default.
- W4288045224 hasConcept C161584116 @default.
- W4288045224 hasConcept C166957645 @default.
- W4288045224 hasConcept C18903297 @default.
- W4288045224 hasConcept C191935318 @default.
- W4288045224 hasConcept C205649164 @default.
- W4288045224 hasConcept C2524010 @default.
- W4288045224 hasConcept C2780092901 @default.
- W4288045224 hasConcept C33923547 @default.
- W4288045224 hasConcept C39432304 @default.
- W4288045224 hasConcept C41008148 @default.
- W4288045224 hasConcept C47737302 @default.
- W4288045224 hasConcept C86803240 @default.
- W4288045224 hasConceptScore W4288045224C105795698 @default.
- W4288045224 hasConceptScore W4288045224C117220453 @default.
- W4288045224 hasConceptScore W4288045224C138695830 @default.
- W4288045224 hasConceptScore W4288045224C149782125 @default.
- W4288045224 hasConceptScore W4288045224C150060386 @default.
- W4288045224 hasConceptScore W4288045224C159620131 @default.
- W4288045224 hasConceptScore W4288045224C161584116 @default.
- W4288045224 hasConceptScore W4288045224C166957645 @default.
- W4288045224 hasConceptScore W4288045224C18903297 @default.
- W4288045224 hasConceptScore W4288045224C191935318 @default.
- W4288045224 hasConceptScore W4288045224C205649164 @default.
- W4288045224 hasConceptScore W4288045224C2524010 @default.
- W4288045224 hasConceptScore W4288045224C2780092901 @default.
- W4288045224 hasConceptScore W4288045224C33923547 @default.
- W4288045224 hasConceptScore W4288045224C39432304 @default.