Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045340> ?p ?o ?g. }
- W4288045340 endingPage "525" @default.
- W4288045340 startingPage "500" @default.
- W4288045340 abstract "Measuring risk is at the center of modern financial risk management. As the world economy is becoming more complex and standard modelling assumptions are violated, the advanced artificial intelligence solutions may provide the right tools to analyse the global market. In this paper, we provide a novel approach for measuring market risk called Encoded Value-at-Risk (Encoded VaR), which is based on a type of artificial neural network, called Variational Auto-encoders (VAEs). Encoded VaR is a generative model which can be used to reproduce market scenarios from a range of historical cross-sectional stock returns, while increasing the signal-to-noise ratio present in the financial data, and learning the dependency structure of the market without any assumptions about the joint distribution of stock returns. We compare Encoded VaR out-of-sample results with twelve other methods and show that it is competitive to many other well-known VaR algorithms presented in the literature." @default.
- W4288045340 created "2022-07-27" @default.
- W4288045340 creator A5051840580 @default.
- W4288045340 creator A5073707909 @default.
- W4288045340 creator A5073800426 @default.
- W4288045340 creator A5075289524 @default.
- W4288045340 date "2022-12-01" @default.
- W4288045340 modified "2023-10-17" @default.
- W4288045340 title "Encoded Value-at-Risk: A machine learning approach for portfolio risk measurement" @default.
- W4288045340 cites W1970957555 @default.
- W4288045340 cites W1977970167 @default.
- W4288045340 cites W1983812497 @default.
- W4288045340 cites W1988611515 @default.
- W4288045340 cites W2006574308 @default.
- W4288045340 cites W2035759606 @default.
- W4288045340 cites W2060581589 @default.
- W4288045340 cites W2070132485 @default.
- W4288045340 cites W2075965721 @default.
- W4288045340 cites W2091035650 @default.
- W4288045340 cites W2093432936 @default.
- W4288045340 cites W2123970954 @default.
- W4288045340 cites W2135177937 @default.
- W4288045340 cites W2136118318 @default.
- W4288045340 cites W2143935988 @default.
- W4288045340 cites W2147317922 @default.
- W4288045340 cites W2150747312 @default.
- W4288045340 cites W2324099123 @default.
- W4288045340 cites W2739057522 @default.
- W4288045340 cites W2795201140 @default.
- W4288045340 cites W2802173112 @default.
- W4288045340 cites W2820282023 @default.
- W4288045340 cites W2896067967 @default.
- W4288045340 cites W2963870508 @default.
- W4288045340 cites W3021001355 @default.
- W4288045340 cites W3121499254 @default.
- W4288045340 cites W3122046970 @default.
- W4288045340 cites W3122264705 @default.
- W4288045340 cites W3122529568 @default.
- W4288045340 cites W3124708473 @default.
- W4288045340 cites W3125246470 @default.
- W4288045340 cites W3125651898 @default.
- W4288045340 cites W781701470 @default.
- W4288045340 doi "https://doi.org/10.1016/j.matcom.2022.07.015" @default.
- W4288045340 hasPublicationYear "2022" @default.
- W4288045340 type Work @default.
- W4288045340 citedByCount "4" @default.
- W4288045340 countsByYear W42880453402023 @default.
- W4288045340 crossrefType "journal-article" @default.
- W4288045340 hasAuthorship W4288045340A5051840580 @default.
- W4288045340 hasAuthorship W4288045340A5073707909 @default.
- W4288045340 hasAuthorship W4288045340A5073800426 @default.
- W4288045340 hasAuthorship W4288045340A5075289524 @default.
- W4288045340 hasConcept C10138342 @default.
- W4288045340 hasConcept C101738243 @default.
- W4288045340 hasConcept C106159729 @default.
- W4288045340 hasConcept C149782125 @default.
- W4288045340 hasConcept C151730666 @default.
- W4288045340 hasConcept C154945302 @default.
- W4288045340 hasConcept C162324750 @default.
- W4288045340 hasConcept C19244329 @default.
- W4288045340 hasConcept C2780299701 @default.
- W4288045340 hasConcept C2780762169 @default.
- W4288045340 hasConcept C2780821815 @default.
- W4288045340 hasConcept C32896092 @default.
- W4288045340 hasConcept C41008148 @default.
- W4288045340 hasConcept C50644808 @default.
- W4288045340 hasConcept C73858035 @default.
- W4288045340 hasConcept C86803240 @default.
- W4288045340 hasConcept C88389905 @default.
- W4288045340 hasConcept C94128290 @default.
- W4288045340 hasConceptScore W4288045340C10138342 @default.
- W4288045340 hasConceptScore W4288045340C101738243 @default.
- W4288045340 hasConceptScore W4288045340C106159729 @default.
- W4288045340 hasConceptScore W4288045340C149782125 @default.
- W4288045340 hasConceptScore W4288045340C151730666 @default.
- W4288045340 hasConceptScore W4288045340C154945302 @default.
- W4288045340 hasConceptScore W4288045340C162324750 @default.
- W4288045340 hasConceptScore W4288045340C19244329 @default.
- W4288045340 hasConceptScore W4288045340C2780299701 @default.
- W4288045340 hasConceptScore W4288045340C2780762169 @default.
- W4288045340 hasConceptScore W4288045340C2780821815 @default.
- W4288045340 hasConceptScore W4288045340C32896092 @default.
- W4288045340 hasConceptScore W4288045340C41008148 @default.
- W4288045340 hasConceptScore W4288045340C50644808 @default.
- W4288045340 hasConceptScore W4288045340C73858035 @default.
- W4288045340 hasConceptScore W4288045340C86803240 @default.
- W4288045340 hasConceptScore W4288045340C88389905 @default.
- W4288045340 hasConceptScore W4288045340C94128290 @default.
- W4288045340 hasLocation W42880453401 @default.
- W4288045340 hasOpenAccess W4288045340 @default.
- W4288045340 hasPrimaryLocation W42880453401 @default.
- W4288045340 hasRelatedWork W10697541 @default.
- W4288045340 hasRelatedWork W1521593927 @default.
- W4288045340 hasRelatedWork W1942326863 @default.
- W4288045340 hasRelatedWork W1967146724 @default.
- W4288045340 hasRelatedWork W2012750392 @default.
- W4288045340 hasRelatedWork W2236116287 @default.
- W4288045340 hasRelatedWork W2344277020 @default.