Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045346> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4288045346 endingPage "101167" @default.
- W4288045346 startingPage "101167" @default.
- W4288045346 abstract "In this study, a multilinear regression (MLR) and three machine learning techniques, i.e., an adaptive neuro-fuzzy inference system (ANFIS), an artificial neural network (ANN), and a support vector machine (SVM) were employed to develop biomass higher heating value (HHV) prediction models as a function of the proximate analysis. Seven inputs selection were applied to explore the extent of correlation between the independent variables and the HHV. The pairing of the volatile matter and fixed carbon presented the most accurate model in ANN, SVM, and MLR while in ANFIS, the ash combined with fixed carbon was more effective. Overall, the combination of ash and fixed carbon in ANFIS was superior in prediction performance having presented the highest correlation coefficient of 0.9371 and the least mean squared error of 0.0029. These techniques can guarantee precise predictions of the HHV of biomass using proximate analysis instead of rigorous and expensive experimental procedures." @default.
- W4288045346 created "2022-07-27" @default.
- W4288045346 creator A5032063669 @default.
- W4288045346 creator A5062007467 @default.
- W4288045346 creator A5076916553 @default.
- W4288045346 date "2022-09-01" @default.
- W4288045346 modified "2023-10-17" @default.
- W4288045346 title "Machine learning models for biomass energy content prediction: A correlation-based optimal feature selection approach" @default.
- W4288045346 cites W1980311188 @default.
- W4288045346 cites W2047007942 @default.
- W4288045346 cites W2079970608 @default.
- W4288045346 cites W2337013626 @default.
- W4288045346 cites W2344568978 @default.
- W4288045346 cites W2592270600 @default.
- W4288045346 cites W2772354950 @default.
- W4288045346 cites W2810233336 @default.
- W4288045346 cites W2914972506 @default.
- W4288045346 cites W2970165023 @default.
- W4288045346 cites W2972443703 @default.
- W4288045346 cites W2994946505 @default.
- W4288045346 cites W3016350595 @default.
- W4288045346 cites W3018132406 @default.
- W4288045346 cites W3083186111 @default.
- W4288045346 cites W3112446971 @default.
- W4288045346 cites W3215803240 @default.
- W4288045346 cites W4221125724 @default.
- W4288045346 doi "https://doi.org/10.1016/j.biteb.2022.101167" @default.
- W4288045346 hasPublicationYear "2022" @default.
- W4288045346 type Work @default.
- W4288045346 citedByCount "7" @default.
- W4288045346 countsByYear W42880453462022 @default.
- W4288045346 countsByYear W42880453462023 @default.
- W4288045346 crossrefType "journal-article" @default.
- W4288045346 hasAuthorship W4288045346A5032063669 @default.
- W4288045346 hasAuthorship W4288045346A5062007467 @default.
- W4288045346 hasAuthorship W4288045346A5076916553 @default.
- W4288045346 hasConcept C105795698 @default.
- W4288045346 hasConcept C119857082 @default.
- W4288045346 hasConcept C12267149 @default.
- W4288045346 hasConcept C139945424 @default.
- W4288045346 hasConcept C148483581 @default.
- W4288045346 hasConcept C153180895 @default.
- W4288045346 hasConcept C154945302 @default.
- W4288045346 hasConcept C186108316 @default.
- W4288045346 hasConcept C195975749 @default.
- W4288045346 hasConcept C202444582 @default.
- W4288045346 hasConcept C2780092901 @default.
- W4288045346 hasConcept C33923547 @default.
- W4288045346 hasConcept C41008148 @default.
- W4288045346 hasConcept C50644808 @default.
- W4288045346 hasConcept C58166 @default.
- W4288045346 hasConcept C84392682 @default.
- W4288045346 hasConceptScore W4288045346C105795698 @default.
- W4288045346 hasConceptScore W4288045346C119857082 @default.
- W4288045346 hasConceptScore W4288045346C12267149 @default.
- W4288045346 hasConceptScore W4288045346C139945424 @default.
- W4288045346 hasConceptScore W4288045346C148483581 @default.
- W4288045346 hasConceptScore W4288045346C153180895 @default.
- W4288045346 hasConceptScore W4288045346C154945302 @default.
- W4288045346 hasConceptScore W4288045346C186108316 @default.
- W4288045346 hasConceptScore W4288045346C195975749 @default.
- W4288045346 hasConceptScore W4288045346C202444582 @default.
- W4288045346 hasConceptScore W4288045346C2780092901 @default.
- W4288045346 hasConceptScore W4288045346C33923547 @default.
- W4288045346 hasConceptScore W4288045346C41008148 @default.
- W4288045346 hasConceptScore W4288045346C50644808 @default.
- W4288045346 hasConceptScore W4288045346C58166 @default.
- W4288045346 hasConceptScore W4288045346C84392682 @default.
- W4288045346 hasLocation W42880453461 @default.
- W4288045346 hasOpenAccess W4288045346 @default.
- W4288045346 hasPrimaryLocation W42880453461 @default.
- W4288045346 hasRelatedWork W1999178348 @default.
- W4288045346 hasRelatedWork W2765961949 @default.
- W4288045346 hasRelatedWork W2768005043 @default.
- W4288045346 hasRelatedWork W2897870065 @default.
- W4288045346 hasRelatedWork W3119865579 @default.
- W4288045346 hasRelatedWork W4244255161 @default.
- W4288045346 hasRelatedWork W4296311369 @default.
- W4288045346 hasRelatedWork W4311044000 @default.
- W4288045346 hasRelatedWork W4318719034 @default.
- W4288045346 hasRelatedWork W4382982879 @default.
- W4288045346 hasVolume "19" @default.
- W4288045346 isParatext "false" @default.
- W4288045346 isRetracted "false" @default.
- W4288045346 workType "article" @default.