Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045457> ?p ?o ?g. }
- W4288045457 endingPage "112331" @default.
- W4288045457 startingPage "112331" @default.
- W4288045457 abstract "With buildings consuming nearly 40% of energy in developed countries, it is important to accurately estimate and understand the building energy efficiency in a city. A better understanding of building energy efficiency is beneficial for reducing overall household energy use and providing guidance for future housing improvement and retrofit. In this research, we propose a deep learning-based multi-source data fusion framework to estimate building energy efficiency. We consider the traditional factors associated with the building energy efficiency from the Energy Performance Certificate (EPC) for 160,000 properties (30,000 buildings) in Glasgow, UK (e.g., property structural attributes and morphological attributes), as well as the Google Street View (GSV) building façade images as a complement. We compare the performance improvements between our data-fusion framework with traditional morphological attributes and image-only models. The results show that including the building façade images from GSV, the overall model accuracy increases from 79.7% to 86.8%. A further investigation and explanation of the deep learning model are conducted to understand the relationships between building features and building energy efficiency by using SHapley Additive exPlanations (SHAP). Our research demonstrates the potential of using multi-source data in building energy efficiency prediction with high accuracy and short inference time. Our paper also helps understand building energy efficiency at the city level to help achieve the net-zero target by 2050." @default.
- W4288045457 created "2022-07-27" @default.
- W4288045457 creator A5009175302 @default.
- W4288045457 creator A5009772655 @default.
- W4288045457 creator A5054605115 @default.
- W4288045457 creator A5055389084 @default.
- W4288045457 creator A5062180431 @default.
- W4288045457 creator A5077137261 @default.
- W4288045457 date "2022-10-01" @default.
- W4288045457 modified "2023-10-09" @default.
- W4288045457 title "Understanding building energy efficiency with administrative and emerging urban big data by deep learning in Glasgow" @default.
- W4288045457 cites W1992120390 @default.
- W4288045457 cites W1994380600 @default.
- W4288045457 cites W2024495474 @default.
- W4288045457 cites W2028805173 @default.
- W4288045457 cites W2045045282 @default.
- W4288045457 cites W2055132753 @default.
- W4288045457 cites W2068241800 @default.
- W4288045457 cites W2068883041 @default.
- W4288045457 cites W2139106762 @default.
- W4288045457 cites W2145500255 @default.
- W4288045457 cites W2163121678 @default.
- W4288045457 cites W2249453499 @default.
- W4288045457 cites W2259417509 @default.
- W4288045457 cites W2343002272 @default.
- W4288045457 cites W2513945566 @default.
- W4288045457 cites W2548560601 @default.
- W4288045457 cites W2737525190 @default.
- W4288045457 cites W2742135129 @default.
- W4288045457 cites W2765239465 @default.
- W4288045457 cites W2770820547 @default.
- W4288045457 cites W2776160383 @default.
- W4288045457 cites W2786125546 @default.
- W4288045457 cites W2800989957 @default.
- W4288045457 cites W2890231632 @default.
- W4288045457 cites W2894665398 @default.
- W4288045457 cites W2895762794 @default.
- W4288045457 cites W2902155426 @default.
- W4288045457 cites W2903963188 @default.
- W4288045457 cites W2909928352 @default.
- W4288045457 cites W2916504680 @default.
- W4288045457 cites W2971659190 @default.
- W4288045457 cites W2979262867 @default.
- W4288045457 cites W2986507446 @default.
- W4288045457 cites W3026652685 @default.
- W4288045457 cites W3092949100 @default.
- W4288045457 cites W3093292596 @default.
- W4288045457 cites W3179293447 @default.
- W4288045457 cites W3183662054 @default.
- W4288045457 cites W3195494505 @default.
- W4288045457 cites W4299853117 @default.
- W4288045457 doi "https://doi.org/10.1016/j.enbuild.2022.112331" @default.
- W4288045457 hasPublicationYear "2022" @default.
- W4288045457 type Work @default.
- W4288045457 citedByCount "13" @default.
- W4288045457 countsByYear W42880454572022 @default.
- W4288045457 countsByYear W42880454572023 @default.
- W4288045457 crossrefType "journal-article" @default.
- W4288045457 hasAuthorship W4288045457A5009175302 @default.
- W4288045457 hasAuthorship W4288045457A5009772655 @default.
- W4288045457 hasAuthorship W4288045457A5054605115 @default.
- W4288045457 hasAuthorship W4288045457A5055389084 @default.
- W4288045457 hasAuthorship W4288045457A5062180431 @default.
- W4288045457 hasAuthorship W4288045457A5077137261 @default.
- W4288045457 hasBestOaLocation W42880454572 @default.
- W4288045457 hasConcept C105795698 @default.
- W4288045457 hasConcept C108583219 @default.
- W4288045457 hasConcept C11413529 @default.
- W4288045457 hasConcept C119599485 @default.
- W4288045457 hasConcept C127413603 @default.
- W4288045457 hasConcept C154945302 @default.
- W4288045457 hasConcept C186370098 @default.
- W4288045457 hasConcept C2742236 @default.
- W4288045457 hasConcept C2776214188 @default.
- W4288045457 hasConcept C33923547 @default.
- W4288045457 hasConcept C41008148 @default.
- W4288045457 hasConcept C96865113 @default.
- W4288045457 hasConceptScore W4288045457C105795698 @default.
- W4288045457 hasConceptScore W4288045457C108583219 @default.
- W4288045457 hasConceptScore W4288045457C11413529 @default.
- W4288045457 hasConceptScore W4288045457C119599485 @default.
- W4288045457 hasConceptScore W4288045457C127413603 @default.
- W4288045457 hasConceptScore W4288045457C154945302 @default.
- W4288045457 hasConceptScore W4288045457C186370098 @default.
- W4288045457 hasConceptScore W4288045457C2742236 @default.
- W4288045457 hasConceptScore W4288045457C2776214188 @default.
- W4288045457 hasConceptScore W4288045457C33923547 @default.
- W4288045457 hasConceptScore W4288045457C41008148 @default.
- W4288045457 hasConceptScore W4288045457C96865113 @default.
- W4288045457 hasLocation W42880454571 @default.
- W4288045457 hasLocation W42880454572 @default.
- W4288045457 hasLocation W42880454573 @default.
- W4288045457 hasOpenAccess W4288045457 @default.
- W4288045457 hasPrimaryLocation W42880454571 @default.
- W4288045457 hasRelatedWork W1504463058 @default.
- W4288045457 hasRelatedWork W1990878504 @default.
- W4288045457 hasRelatedWork W2055243143 @default.
- W4288045457 hasRelatedWork W2264307891 @default.