Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045497> ?p ?o ?g. }
- W4288045497 endingPage "119521" @default.
- W4288045497 startingPage "119521" @default.
- W4288045497 abstract "Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R2 scores between 0.60-0.74. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints." @default.
- W4288045497 created "2022-07-27" @default.
- W4288045497 creator A5018256474 @default.
- W4288045497 creator A5026515170 @default.
- W4288045497 creator A5033095909 @default.
- W4288045497 creator A5040139150 @default.
- W4288045497 creator A5049330818 @default.
- W4288045497 creator A5069632886 @default.
- W4288045497 creator A5071554634 @default.
- W4288045497 creator A5089655831 @default.
- W4288045497 date "2022-11-01" @default.
- W4288045497 modified "2023-10-03" @default.
- W4288045497 title "A reusable benchmark of brain-age prediction from M/EEG resting-state signals" @default.
- W4288045497 cites W1464493988 @default.
- W4288045497 cites W1588434295 @default.
- W4288045497 cites W1824528708 @default.
- W4288045497 cites W1828334443 @default.
- W4288045497 cites W1862394037 @default.
- W4288045497 cites W1985244573 @default.
- W4288045497 cites W1988649197 @default.
- W4288045497 cites W2010112159 @default.
- W4288045497 cites W2014833813 @default.
- W4288045497 cites W2024729467 @default.
- W4288045497 cites W2037504148 @default.
- W4288045497 cites W2040375532 @default.
- W4288045497 cites W2042865986 @default.
- W4288045497 cites W2045892248 @default.
- W4288045497 cites W2063404606 @default.
- W4288045497 cites W2077695508 @default.
- W4288045497 cites W2078563723 @default.
- W4288045497 cites W2084326427 @default.
- W4288045497 cites W2085876742 @default.
- W4288045497 cites W2095642798 @default.
- W4288045497 cites W2096597330 @default.
- W4288045497 cites W2105957367 @default.
- W4288045497 cites W2106628957 @default.
- W4288045497 cites W2108150542 @default.
- W4288045497 cites W2113357974 @default.
- W4288045497 cites W2117800611 @default.
- W4288045497 cites W2129637843 @default.
- W4288045497 cites W2130915922 @default.
- W4288045497 cites W2131543796 @default.
- W4288045497 cites W2135595031 @default.
- W4288045497 cites W2142164019 @default.
- W4288045497 cites W2150751047 @default.
- W4288045497 cites W2155481956 @default.
- W4288045497 cites W2156770021 @default.
- W4288045497 cites W2159759971 @default.
- W4288045497 cites W2169603869 @default.
- W4288045497 cites W2274405424 @default.
- W4288045497 cites W2332361809 @default.
- W4288045497 cites W2421101021 @default.
- W4288045497 cites W2495406692 @default.
- W4288045497 cites W2549437649 @default.
- W4288045497 cites W2552208519 @default.
- W4288045497 cites W2579617530 @default.
- W4288045497 cites W2599251041 @default.
- W4288045497 cites W2602552939 @default.
- W4288045497 cites W2723723801 @default.
- W4288045497 cites W2741907166 @default.
- W4288045497 cites W2766141193 @default.
- W4288045497 cites W2776072295 @default.
- W4288045497 cites W2804449593 @default.
- W4288045497 cites W2805766146 @default.
- W4288045497 cites W2886905122 @default.
- W4288045497 cites W2895368692 @default.
- W4288045497 cites W2895486342 @default.
- W4288045497 cites W2900936992 @default.
- W4288045497 cites W2901568506 @default.
- W4288045497 cites W2906104384 @default.
- W4288045497 cites W2911964244 @default.
- W4288045497 cites W2929665219 @default.
- W4288045497 cites W2945976633 @default.
- W4288045497 cites W2951042025 @default.
- W4288045497 cites W2952277065 @default.
- W4288045497 cites W2956069845 @default.
- W4288045497 cites W2963160524 @default.
- W4288045497 cites W2963355311 @default.
- W4288045497 cites W2963780014 @default.
- W4288045497 cites W2963919481 @default.
- W4288045497 cites W2990091959 @default.
- W4288045497 cites W2990366895 @default.
- W4288045497 cites W2995774252 @default.
- W4288045497 cites W2996586346 @default.
- W4288045497 cites W3016088911 @default.
- W4288045497 cites W3029307787 @default.
- W4288045497 cites W3035447285 @default.
- W4288045497 cites W3037286432 @default.
- W4288045497 cites W3072760613 @default.
- W4288045497 cites W3080221164 @default.
- W4288045497 cites W3085768000 @default.
- W4288045497 cites W3088250370 @default.
- W4288045497 cites W3099878876 @default.
- W4288045497 cites W3103145119 @default.
- W4288045497 cites W3104324110 @default.
- W4288045497 cites W3110862467 @default.
- W4288045497 cites W3111553083 @default.
- W4288045497 cites W3126221909 @default.