Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288046154> ?p ?o ?g. }
- W4288046154 endingPage "012049" @default.
- W4288046154 startingPage "012049" @default.
- W4288046154 abstract "Abstract Seagrass beds are important habitats in the marine environment by providing food and shelter to dugongs and sea turtles. Protection and conservation plans require detail spatial distribution of these habitats such as habitat suitability maps. In this study, machine learning techniques were tested by using Multibeam Echo Sounder System (MBES) and ground truth datasets to produce seagrass habitat suitability models at Redang Marine Park. Five bathymetric predictors and seven backscatter predictors from MBES data were used to representing topography features and sediment types in the study area. Three machine learning algorithms; Maximum Entropy (MaxEnt), Random Forests (RF), and Support Vector Machine (SVM) were tested. The results revealed that MaxEnt and RF models achieved the highest accuracy (93% and 91%, respectively) with SVM produced the lowest (67%). Depth was identified as the most significant predictor for all three models. The contributions of backscatter predictors were more central for SVM model. High accuracy models showed that suitable habitat for seagrass is distributed around shallow water areas (<20 m) and between fringing reef habitats. The findings highlight that acoustic data and machine learning are capable to predict how seagrass beds are spatially distributed which provide important information for managing marine resources." @default.
- W4288046154 created "2022-07-27" @default.
- W4288046154 creator A5050126274 @default.
- W4288046154 creator A5065819825 @default.
- W4288046154 date "2022-07-01" @default.
- W4288046154 modified "2023-10-14" @default.
- W4288046154 title "Seagrass Habitat Suitability Models using Multibeam Echosounder Data and Multiple Machine Learning Techniques" @default.
- W4288046154 cites W1968796030 @default.
- W4288046154 cites W1977705357 @default.
- W4288046154 cites W1990082322 @default.
- W4288046154 cites W1990748933 @default.
- W4288046154 cites W1990808240 @default.
- W4288046154 cites W2000068895 @default.
- W4288046154 cites W2033686454 @default.
- W4288046154 cites W2033882318 @default.
- W4288046154 cites W2046308263 @default.
- W4288046154 cites W2054306701 @default.
- W4288046154 cites W2055092277 @default.
- W4288046154 cites W2056482671 @default.
- W4288046154 cites W2056868695 @default.
- W4288046154 cites W2081342653 @default.
- W4288046154 cites W2091033053 @default.
- W4288046154 cites W2093249939 @default.
- W4288046154 cites W2094785904 @default.
- W4288046154 cites W2097601813 @default.
- W4288046154 cites W2115268776 @default.
- W4288046154 cites W2121554846 @default.
- W4288046154 cites W2133301418 @default.
- W4288046154 cites W2138191319 @default.
- W4288046154 cites W2139416101 @default.
- W4288046154 cites W2158650102 @default.
- W4288046154 cites W2159391354 @default.
- W4288046154 cites W2171436937 @default.
- W4288046154 cites W2173381635 @default.
- W4288046154 cites W2173392629 @default.
- W4288046154 cites W2217136301 @default.
- W4288046154 cites W2321622720 @default.
- W4288046154 cites W2324360419 @default.
- W4288046154 cites W2333171309 @default.
- W4288046154 cites W2487786694 @default.
- W4288046154 cites W2495976841 @default.
- W4288046154 cites W2607199519 @default.
- W4288046154 cites W2623238351 @default.
- W4288046154 cites W2731800988 @default.
- W4288046154 cites W2766774879 @default.
- W4288046154 cites W2782100517 @default.
- W4288046154 cites W2794264790 @default.
- W4288046154 cites W2796671381 @default.
- W4288046154 cites W2887010361 @default.
- W4288046154 cites W2889580132 @default.
- W4288046154 cites W2889590147 @default.
- W4288046154 cites W2890795625 @default.
- W4288046154 cites W2899854863 @default.
- W4288046154 cites W2901775071 @default.
- W4288046154 cites W2903005853 @default.
- W4288046154 cites W2903334596 @default.
- W4288046154 cites W2903368450 @default.
- W4288046154 cites W2907958446 @default.
- W4288046154 cites W2921569384 @default.
- W4288046154 cites W2945220899 @default.
- W4288046154 cites W2975884333 @default.
- W4288046154 cites W2978025760 @default.
- W4288046154 cites W2982791684 @default.
- W4288046154 cites W3009355673 @default.
- W4288046154 cites W3011327295 @default.
- W4288046154 cites W3011393098 @default.
- W4288046154 cites W3020079570 @default.
- W4288046154 cites W3024359098 @default.
- W4288046154 cites W3038298936 @default.
- W4288046154 cites W3038774376 @default.
- W4288046154 cites W3096319293 @default.
- W4288046154 cites W3108861869 @default.
- W4288046154 cites W3112317898 @default.
- W4288046154 cites W3125756062 @default.
- W4288046154 cites W3139834629 @default.
- W4288046154 cites W3158227920 @default.
- W4288046154 cites W3159050519 @default.
- W4288046154 cites W3164591427 @default.
- W4288046154 cites W3181593466 @default.
- W4288046154 cites W3185343393 @default.
- W4288046154 cites W3195780224 @default.
- W4288046154 cites W3196062107 @default.
- W4288046154 cites W3201532419 @default.
- W4288046154 cites W3205085355 @default.
- W4288046154 cites W818061586 @default.
- W4288046154 doi "https://doi.org/10.1088/1755-1315/1064/1/012049" @default.
- W4288046154 hasPublicationYear "2022" @default.
- W4288046154 type Work @default.
- W4288046154 citedByCount "0" @default.
- W4288046154 crossrefType "journal-article" @default.
- W4288046154 hasAuthorship W4288046154A5050126274 @default.
- W4288046154 hasAuthorship W4288046154A5065819825 @default.
- W4288046154 hasBestOaLocation W42880461541 @default.
- W4288046154 hasConcept C111368507 @default.
- W4288046154 hasConcept C119857082 @default.
- W4288046154 hasConcept C12267149 @default.
- W4288046154 hasConcept C127313418 @default.
- W4288046154 hasConcept C134037308 @default.