Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288047013> ?p ?o ?g. }
- W4288047013 endingPage "232596712211117" @default.
- W4288047013 startingPage "232596712211117" @default.
- W4288047013 abstract "In professional sports, injuries resulting in loss of playing time have serious implications for both the athlete and the organization. Efforts to quantify injury probability utilizing machine learning have been met with renewed interest, and the development of effective models has the potential to supplement the decision-making process of team physicians.The purpose of this study was to (1) characterize the epidemiology of time-loss lower extremity muscle strains (LEMSs) in the National Basketball Association (NBA) from 1999 to 2019 and (2) determine the validity of a machine-learning model in predicting injury risk. It was hypothesized that time-loss LEMSs would be infrequent in this cohort and that a machine-learning model would outperform conventional methods in the prediction of injury risk.Case-control study; Level of evidence, 3.Performance data and rates of the 4 major muscle strain injury types (hamstring, quadriceps, calf, and groin) were compiled from the 1999 to 2019 NBA seasons. Injuries included all publicly reported injuries that resulted in lost playing time. Models to predict the occurrence of a LEMS were generated using random forest, extreme gradient boosting (XGBoost), neural network, support vector machines, elastic net penalized logistic regression, and generalized logistic regression. Performance was compared utilizing discrimination, calibration, decision curve analysis, and the Brier score.A total of 736 LEMSs resulting in lost playing time occurred among 2103 athletes. Important variables for predicting LEMS included previous number of lower extremity injuries; age; recent history of injuries to the ankle, hamstring, or groin; and recent history of concussion as well as 3-point attempt rate and free throw attempt rate. The XGBoost machine achieved the best performance based on discrimination assessed via internal validation (area under the receiver operating characteristic curve, 0.840), calibration, and decision curve analysis.Machine learning algorithms such as XGBoost outperformed logistic regression in the prediction of a LEMS that will result in lost time. Several variables increased the risk of LEMS, including a history of various lower extremity injuries, recent concussion, and total number of previous injuries." @default.
- W4288047013 created "2022-07-27" @default.
- W4288047013 creator A5008947775 @default.
- W4288047013 creator A5042401335 @default.
- W4288047013 creator A5058662462 @default.
- W4288047013 creator A5066027782 @default.
- W4288047013 creator A5066892142 @default.
- W4288047013 creator A5075756090 @default.
- W4288047013 creator A5088641088 @default.
- W4288047013 date "2022-07-01" @default.
- W4288047013 modified "2023-09-27" @default.
- W4288047013 title "Machine Learning for Predicting Lower Extremity Muscle Strain in National Basketball Association Athletes" @default.
- W4288047013 cites W1980283223 @default.
- W4288047013 cites W1985308829 @default.
- W4288047013 cites W2098026442 @default.
- W4288047013 cites W2115709314 @default.
- W4288047013 cites W2120732722 @default.
- W4288047013 cites W2136085913 @default.
- W4288047013 cites W2152389269 @default.
- W4288047013 cites W2203695966 @default.
- W4288047013 cites W2410760183 @default.
- W4288047013 cites W2498119267 @default.
- W4288047013 cites W2562251009 @default.
- W4288047013 cites W2576081345 @default.
- W4288047013 cites W2767455780 @default.
- W4288047013 cites W2776831511 @default.
- W4288047013 cites W2782785952 @default.
- W4288047013 cites W2783808523 @default.
- W4288047013 cites W2793611168 @default.
- W4288047013 cites W2796586714 @default.
- W4288047013 cites W2803966683 @default.
- W4288047013 cites W2808594149 @default.
- W4288047013 cites W2884387907 @default.
- W4288047013 cites W2889913746 @default.
- W4288047013 cites W2891385203 @default.
- W4288047013 cites W2908035099 @default.
- W4288047013 cites W2948399002 @default.
- W4288047013 cites W2972614533 @default.
- W4288047013 cites W2998718550 @default.
- W4288047013 cites W3001077607 @default.
- W4288047013 cites W3005391767 @default.
- W4288047013 cites W3019680030 @default.
- W4288047013 cites W3029279195 @default.
- W4288047013 cites W3029310387 @default.
- W4288047013 cites W3084580190 @default.
- W4288047013 cites W3088387283 @default.
- W4288047013 cites W3096668942 @default.
- W4288047013 cites W3097119296 @default.
- W4288047013 cites W3097717028 @default.
- W4288047013 cites W3102828911 @default.
- W4288047013 cites W4210661449 @default.
- W4288047013 doi "https://doi.org/10.1177/23259671221111742" @default.
- W4288047013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35923866" @default.
- W4288047013 hasPublicationYear "2022" @default.
- W4288047013 type Work @default.
- W4288047013 citedByCount "4" @default.
- W4288047013 countsByYear W42880470132022 @default.
- W4288047013 countsByYear W42880470132023 @default.
- W4288047013 crossrefType "journal-article" @default.
- W4288047013 hasAuthorship W4288047013A5008947775 @default.
- W4288047013 hasAuthorship W4288047013A5042401335 @default.
- W4288047013 hasAuthorship W4288047013A5058662462 @default.
- W4288047013 hasAuthorship W4288047013A5066027782 @default.
- W4288047013 hasAuthorship W4288047013A5066892142 @default.
- W4288047013 hasAuthorship W4288047013A5075756090 @default.
- W4288047013 hasAuthorship W4288047013A5088641088 @default.
- W4288047013 hasBestOaLocation W42880470131 @default.
- W4288047013 hasConcept C103189561 @default.
- W4288047013 hasConcept C119857082 @default.
- W4288047013 hasConcept C126322002 @default.
- W4288047013 hasConcept C141071460 @default.
- W4288047013 hasConcept C151956035 @default.
- W4288047013 hasConcept C154945302 @default.
- W4288047013 hasConcept C166957645 @default.
- W4288047013 hasConcept C1862650 @default.
- W4288047013 hasConcept C190385971 @default.
- W4288047013 hasConcept C194828623 @default.
- W4288047013 hasConcept C2776141760 @default.
- W4288047013 hasConcept C2778426673 @default.
- W4288047013 hasConcept C2778640784 @default.
- W4288047013 hasConcept C2781054738 @default.
- W4288047013 hasConcept C3017944768 @default.
- W4288047013 hasConcept C35405484 @default.
- W4288047013 hasConcept C41008148 @default.
- W4288047013 hasConcept C71924100 @default.
- W4288047013 hasConcept C72563966 @default.
- W4288047013 hasConcept C95457728 @default.
- W4288047013 hasConcept C99508421 @default.
- W4288047013 hasConceptScore W4288047013C103189561 @default.
- W4288047013 hasConceptScore W4288047013C119857082 @default.
- W4288047013 hasConceptScore W4288047013C126322002 @default.
- W4288047013 hasConceptScore W4288047013C141071460 @default.
- W4288047013 hasConceptScore W4288047013C151956035 @default.
- W4288047013 hasConceptScore W4288047013C154945302 @default.
- W4288047013 hasConceptScore W4288047013C166957645 @default.
- W4288047013 hasConceptScore W4288047013C1862650 @default.
- W4288047013 hasConceptScore W4288047013C190385971 @default.
- W4288047013 hasConceptScore W4288047013C194828623 @default.