Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049091> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4288049091 endingPage "e38414" @default.
- W4288049091 startingPage "e38414" @default.
- W4288049091 abstract "Knowledge discovery from treatment data records from Chinese physicians is a dramatic challenge in the application of artificial intelligence (AI) models to the research of traditional Chinese medicine (TCM).This paper aims to construct a TCM knowledge graph (KG) from Chinese physicians and apply it to the decision-making related to diagnosis and treatment in TCM.A new framework leveraging a representation learning method for TCM KG construction and application was designed. A transformer-based Contextualized Knowledge Graph Embedding (CoKE) model was applied to KG representation learning and knowledge distillation. Automatic identification and expansion of multihop relations were integrated with the CoKE model as a pipeline. Based on the framework, a TCM KG containing 59,882 entities (eg, diseases, symptoms, examinations, drugs), 17 relations, and 604,700 triples was constructed. The framework was validated through a link predication task.Experiments showed that the framework outperforms a set of baseline models in the link prediction task using the standard metrics mean reciprocal rank (MRR) and Hits@N. The knowledge graph embedding (KGE) multitagged TCM discriminative diagnosis metrics also indicated the improvement of our framework compared with the baseline models.Experiments showed that the clinical KG representation learning and application framework is effective for knowledge discovery and decision-making assistance in diagnosis and treatment. Our framework shows superiority of application prospects in tasks such as KG-fused multimodal information diagnosis, KGE-based text classification, and knowledge inference-based medical question answering." @default.
- W4288049091 created "2022-07-27" @default.
- W4288049091 creator A5036108525 @default.
- W4288049091 creator A5082188916 @default.
- W4288049091 creator A5082690569 @default.
- W4288049091 creator A5088263100 @default.
- W4288049091 date "2022-09-02" @default.
- W4288049091 modified "2023-09-27" @default.
- W4288049091 title "Leveraging Representation Learning for the Construction and Application of a Knowledge Graph for Traditional Chinese Medicine: Framework Development Study" @default.
- W4288049091 cites W1426956448 @default.
- W4288049091 cites W1964250852 @default.
- W4288049091 cites W2022166150 @default.
- W4288049091 cites W2094728533 @default.
- W4288049091 cites W2184957013 @default.
- W4288049091 cites W2250184916 @default.
- W4288049091 cites W2250342289 @default.
- W4288049091 cites W2283196293 @default.
- W4288049091 cites W2616383538 @default.
- W4288049091 cites W2728059831 @default.
- W4288049091 cites W2735585131 @default.
- W4288049091 cites W2763887236 @default.
- W4288049091 cites W2774837955 @default.
- W4288049091 cites W2776922069 @default.
- W4288049091 cites W2808652502 @default.
- W4288049091 cites W2918323453 @default.
- W4288049091 cites W2949972983 @default.
- W4288049091 cites W2951105272 @default.
- W4288049091 cites W2963119656 @default.
- W4288049091 cites W2963380480 @default.
- W4288049091 cites W2964279602 @default.
- W4288049091 cites W3011574394 @default.
- W4288049091 cites W3034374701 @default.
- W4288049091 cites W3044764387 @default.
- W4288049091 cites W3168834895 @default.
- W4288049091 cites W4240861882 @default.
- W4288049091 cites W881848819 @default.
- W4288049091 doi "https://doi.org/10.2196/38414" @default.
- W4288049091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36053574" @default.
- W4288049091 hasPublicationYear "2022" @default.
- W4288049091 type Work @default.
- W4288049091 citedByCount "1" @default.
- W4288049091 countsByYear W42880490912023 @default.
- W4288049091 crossrefType "journal-article" @default.
- W4288049091 hasAuthorship W4288049091A5036108525 @default.
- W4288049091 hasAuthorship W4288049091A5082188916 @default.
- W4288049091 hasAuthorship W4288049091A5082690569 @default.
- W4288049091 hasAuthorship W4288049091A5088263100 @default.
- W4288049091 hasBestOaLocation W42880490911 @default.
- W4288049091 hasConcept C119857082 @default.
- W4288049091 hasConcept C120567893 @default.
- W4288049091 hasConcept C124101348 @default.
- W4288049091 hasConcept C154945302 @default.
- W4288049091 hasConcept C204321447 @default.
- W4288049091 hasConcept C2776214188 @default.
- W4288049091 hasConcept C41008148 @default.
- W4288049091 hasConcept C41608201 @default.
- W4288049091 hasConceptScore W4288049091C119857082 @default.
- W4288049091 hasConceptScore W4288049091C120567893 @default.
- W4288049091 hasConceptScore W4288049091C124101348 @default.
- W4288049091 hasConceptScore W4288049091C154945302 @default.
- W4288049091 hasConceptScore W4288049091C204321447 @default.
- W4288049091 hasConceptScore W4288049091C2776214188 @default.
- W4288049091 hasConceptScore W4288049091C41008148 @default.
- W4288049091 hasConceptScore W4288049091C41608201 @default.
- W4288049091 hasIssue "9" @default.
- W4288049091 hasLocation W42880490911 @default.
- W4288049091 hasLocation W42880490912 @default.
- W4288049091 hasLocation W42880490913 @default.
- W4288049091 hasOpenAccess W4288049091 @default.
- W4288049091 hasPrimaryLocation W42880490911 @default.
- W4288049091 hasRelatedWork W2961085424 @default.
- W4288049091 hasRelatedWork W3046775127 @default.
- W4288049091 hasRelatedWork W3170094116 @default.
- W4288049091 hasRelatedWork W4205958290 @default.
- W4288049091 hasRelatedWork W4285260836 @default.
- W4288049091 hasRelatedWork W4286629047 @default.
- W4288049091 hasRelatedWork W4306321456 @default.
- W4288049091 hasRelatedWork W4306674287 @default.
- W4288049091 hasRelatedWork W4386462264 @default.
- W4288049091 hasRelatedWork W4224009465 @default.
- W4288049091 hasVolume "10" @default.
- W4288049091 isParatext "false" @default.
- W4288049091 isRetracted "false" @default.
- W4288049091 workType "article" @default.