Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049457> ?p ?o ?g. }
- W4288049457 abstract "In the power system, research is being conducted in diagnosing and monitoring the condition of power equipment in a precise way. The Partial Discharges (PD) estimations under high voltage is recognized to be the most renowned and useful approach for accessing the electrical behaviour of the insulation material. The PD is good at localizing the dielectric failures even in the smaller regions before the occurrence of the dielectric breakdown. Therefore, the PD condition monitoring with accurate feature specification will be the appropriate model for enhancing the life span of the electrical apparatus. In this research work, a novel data-driven approach is introduced to detect the PD pulses in power cables using optimization based machine learning models. The proposed model will encompass two major phases: feature extraction and recognition. The first phase of the proposed method concentrates on extracting the wavelet scattering transform-based features. In the second phase, these features are fed as the input to optimized Deep Belief Network (DBN), whose count of the hidden neuron is optimized via a Self Adaptive Border Collie Optimization algorithm (SA-BCO). Finally, the performance evaluation is done in terms of diverse performance measures." @default.
- W4288049457 created "2022-07-27" @default.
- W4288049457 creator A5045479614 @default.
- W4288049457 creator A5057925919 @default.
- W4288049457 creator A5070685200 @default.
- W4288049457 date "2022-03-01" @default.
- W4288049457 modified "2023-09-27" @default.
- W4288049457 title "Self-Adaptive Optimization Assisted Deep Learning Model for Partial Discharge Recognition" @default.
- W4288049457 cites W2095003442 @default.
- W4288049457 cites W2121571815 @default.
- W4288049457 cites W2153335755 @default.
- W4288049457 cites W2159058417 @default.
- W4288049457 cites W2171374651 @default.
- W4288049457 cites W2493732271 @default.
- W4288049457 cites W2588332248 @default.
- W4288049457 cites W2591878561 @default.
- W4288049457 cites W2592932761 @default.
- W4288049457 cites W2594280247 @default.
- W4288049457 cites W2769152703 @default.
- W4288049457 cites W2772263446 @default.
- W4288049457 cites W2786563177 @default.
- W4288049457 cites W2790441417 @default.
- W4288049457 cites W2794021563 @default.
- W4288049457 cites W2891064068 @default.
- W4288049457 cites W2900207996 @default.
- W4288049457 cites W2902973003 @default.
- W4288049457 cites W2909359396 @default.
- W4288049457 cites W2909400870 @default.
- W4288049457 cites W2913489383 @default.
- W4288049457 cites W2919638255 @default.
- W4288049457 cites W2921736909 @default.
- W4288049457 cites W2922735045 @default.
- W4288049457 cites W2946867748 @default.
- W4288049457 cites W2972718408 @default.
- W4288049457 cites W2975131672 @default.
- W4288049457 cites W2977263053 @default.
- W4288049457 cites W2989855639 @default.
- W4288049457 cites W2992873798 @default.
- W4288049457 cites W3005367000 @default.
- W4288049457 cites W3013963210 @default.
- W4288049457 cites W3025372677 @default.
- W4288049457 cites W3027820774 @default.
- W4288049457 cites W3033398188 @default.
- W4288049457 cites W3043112380 @default.
- W4288049457 cites W3047643256 @default.
- W4288049457 cites W3047836020 @default.
- W4288049457 cites W3048258511 @default.
- W4288049457 cites W3053735264 @default.
- W4288049457 cites W3079877832 @default.
- W4288049457 cites W3084720100 @default.
- W4288049457 cites W3164947024 @default.
- W4288049457 cites W3168928417 @default.
- W4288049457 cites W4238330932 @default.
- W4288049457 doi "https://doi.org/10.1142/s0129626421500249" @default.
- W4288049457 hasPublicationYear "2022" @default.
- W4288049457 type Work @default.
- W4288049457 citedByCount "0" @default.
- W4288049457 crossrefType "journal-article" @default.
- W4288049457 hasAuthorship W4288049457A5045479614 @default.
- W4288049457 hasAuthorship W4288049457A5057925919 @default.
- W4288049457 hasAuthorship W4288049457A5070685200 @default.
- W4288049457 hasConcept C108583219 @default.
- W4288049457 hasConcept C11413529 @default.
- W4288049457 hasConcept C119599485 @default.
- W4288049457 hasConcept C119857082 @default.
- W4288049457 hasConcept C121332964 @default.
- W4288049457 hasConcept C127413603 @default.
- W4288049457 hasConcept C130143024 @default.
- W4288049457 hasConcept C138885662 @default.
- W4288049457 hasConcept C153180895 @default.
- W4288049457 hasConcept C154945302 @default.
- W4288049457 hasConcept C163258240 @default.
- W4288049457 hasConcept C165801399 @default.
- W4288049457 hasConcept C178790620 @default.
- W4288049457 hasConcept C185592680 @default.
- W4288049457 hasConcept C196216189 @default.
- W4288049457 hasConcept C2776401178 @default.
- W4288049457 hasConcept C41008148 @default.
- W4288049457 hasConcept C41895202 @default.
- W4288049457 hasConcept C44280652 @default.
- W4288049457 hasConcept C47432892 @default.
- W4288049457 hasConcept C52622490 @default.
- W4288049457 hasConcept C62520636 @default.
- W4288049457 hasConcept C97385483 @default.
- W4288049457 hasConceptScore W4288049457C108583219 @default.
- W4288049457 hasConceptScore W4288049457C11413529 @default.
- W4288049457 hasConceptScore W4288049457C119599485 @default.
- W4288049457 hasConceptScore W4288049457C119857082 @default.
- W4288049457 hasConceptScore W4288049457C121332964 @default.
- W4288049457 hasConceptScore W4288049457C127413603 @default.
- W4288049457 hasConceptScore W4288049457C130143024 @default.
- W4288049457 hasConceptScore W4288049457C138885662 @default.
- W4288049457 hasConceptScore W4288049457C153180895 @default.
- W4288049457 hasConceptScore W4288049457C154945302 @default.
- W4288049457 hasConceptScore W4288049457C163258240 @default.
- W4288049457 hasConceptScore W4288049457C165801399 @default.
- W4288049457 hasConceptScore W4288049457C178790620 @default.
- W4288049457 hasConceptScore W4288049457C185592680 @default.
- W4288049457 hasConceptScore W4288049457C196216189 @default.
- W4288049457 hasConceptScore W4288049457C2776401178 @default.