Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049494> ?p ?o ?g. }
- W4288049494 endingPage "224" @default.
- W4288049494 startingPage "208" @default.
- W4288049494 abstract "Electrocardiography is the gold standard technique for detecting abnormal heart conditions. Automatic detection of electrocardiogram (ECG) abnormalities helps clinicians analyze the large amount of data produced daily by cardiac monitors. As thenumber of abnormal ECG samples with cardiologist-supplied labels required to train supervised machine learning models is limited, there is a growing need for unsupervised learning methods for ECG analysis. Unsupervised learning aims to partition ECG samples into distinct abnormality classes without cardiologist-supplied labels–a process referred to as ECG clustering. In addition to abnormality detection, ECG clustering has recently discovered inter and intra-individual patterns that reveal valuable information about the whole body and mind, such as emotions, mental disorders, and metabolic levels. ECG clustering can also resolve specific challenges facing supervised learning systems, such as the imbalanced data problem, and can enhance biometric systems. While several reviews exist on supervised ECG systems, a comprehensive review of unsupervised ECG analysis techniques is still lacking. This study reviews ECG clustering techniques developed mainly in the last decade. The focus will be on recent machine learning and deep learning algorithms and their practical applications. We critically review and compare these techniques, discuss their applications and limitations, and provide future research directions. This review provides further insights into ECG clustering and presents the necessary information required to adopt the appropriate algorithm for a specific application." @default.
- W4288049494 created "2022-07-27" @default.
- W4288049494 creator A5004157893 @default.
- W4288049494 creator A5011176076 @default.
- W4288049494 creator A5013106016 @default.
- W4288049494 creator A5069636604 @default.
- W4288049494 date "2023-01-01" @default.
- W4288049494 modified "2023-10-10" @default.
- W4288049494 title "Unsupervised ECG Analysis: A Review" @default.
- W4288049494 cites W1128809682 @default.
- W4288049494 cites W129053169 @default.
- W4288049494 cites W1546507042 @default.
- W4288049494 cites W1546847729 @default.
- W4288049494 cites W1910515323 @default.
- W4288049494 cites W1923663083 @default.
- W4288049494 cites W1970840579 @default.
- W4288049494 cites W1973264045 @default.
- W4288049494 cites W1986307910 @default.
- W4288049494 cites W1987482683 @default.
- W4288049494 cites W1987971958 @default.
- W4288049494 cites W1990368529 @default.
- W4288049494 cites W1990517717 @default.
- W4288049494 cites W1999368465 @default.
- W4288049494 cites W2005766354 @default.
- W4288049494 cites W2006910013 @default.
- W4288049494 cites W2013697141 @default.
- W4288049494 cites W2017487767 @default.
- W4288049494 cites W2028117997 @default.
- W4288049494 cites W2031235730 @default.
- W4288049494 cites W2032015553 @default.
- W4288049494 cites W2061669177 @default.
- W4288049494 cites W2063388653 @default.
- W4288049494 cites W2066161530 @default.
- W4288049494 cites W2088249804 @default.
- W4288049494 cites W2092335550 @default.
- W4288049494 cites W2094282921 @default.
- W4288049494 cites W2095409369 @default.
- W4288049494 cites W2104293071 @default.
- W4288049494 cites W2106180576 @default.
- W4288049494 cites W2113891167 @default.
- W4288049494 cites W2116064496 @default.
- W4288049494 cites W2117487426 @default.
- W4288049494 cites W2120303002 @default.
- W4288049494 cites W2121014581 @default.
- W4288049494 cites W2122763650 @default.
- W4288049494 cites W2123735340 @default.
- W4288049494 cites W2127130980 @default.
- W4288049494 cites W2127510558 @default.
- W4288049494 cites W2136848157 @default.
- W4288049494 cites W2137301410 @default.
- W4288049494 cites W2139533148 @default.
- W4288049494 cites W2139727462 @default.
- W4288049494 cites W2140972426 @default.
- W4288049494 cites W2142603975 @default.
- W4288049494 cites W2143560894 @default.
- W4288049494 cites W2162406269 @default.
- W4288049494 cites W2162800060 @default.
- W4288049494 cites W2165232124 @default.
- W4288049494 cites W2165698076 @default.
- W4288049494 cites W2167865572 @default.
- W4288049494 cites W2194775991 @default.
- W4288049494 cites W2312368304 @default.
- W4288049494 cites W2318199321 @default.
- W4288049494 cites W2491453011 @default.
- W4288049494 cites W2552408385 @default.
- W4288049494 cites W2589049692 @default.
- W4288049494 cites W2590112380 @default.
- W4288049494 cites W2600788496 @default.
- W4288049494 cites W2672673816 @default.
- W4288049494 cites W2730106296 @default.
- W4288049494 cites W2749445606 @default.
- W4288049494 cites W2751547580 @default.
- W4288049494 cites W2754331792 @default.
- W4288049494 cites W2756393964 @default.
- W4288049494 cites W2765350348 @default.
- W4288049494 cites W2778545923 @default.
- W4288049494 cites W2779692282 @default.
- W4288049494 cites W2784316640 @default.
- W4288049494 cites W2789551001 @default.
- W4288049494 cites W2791450091 @default.
- W4288049494 cites W2794550444 @default.
- W4288049494 cites W2795302640 @default.
- W4288049494 cites W2883868997 @default.
- W4288049494 cites W2884851420 @default.
- W4288049494 cites W2886467135 @default.
- W4288049494 cites W2891342985 @default.
- W4288049494 cites W2896429716 @default.
- W4288049494 cites W2901892716 @default.
- W4288049494 cites W2904022596 @default.
- W4288049494 cites W2915050532 @default.
- W4288049494 cites W2918769252 @default.
- W4288049494 cites W2935866603 @default.
- W4288049494 cites W2963668841 @default.
- W4288049494 cites W2963761396 @default.
- W4288049494 cites W2964296408 @default.
- W4288049494 cites W2967199289 @default.
- W4288049494 cites W2975178089 @default.
- W4288049494 cites W2975310135 @default.