Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049651> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4288049651 abstract "The COVID-19 pandemic imposes a tremendous burden upon society. Several studies have documented stressors and fears of COVID-19 for adult populations, but few studies pay attention to the COVID-19 stressors on children and adolescents. Assessing the stressors of COVID-19 on children and adolescents can provide the basis for interventions to bring children and adolescents' mental health out of the shadows. Entering the Era of Big Data, the psychological state can be assessed through integrative analysis of data. This study adopted a whole-group sampling method. After a new round of the COVID-19 epidemic caused by imported cases in Jiangsu and Fujian provinces of China, self-report questionnaires were sent to children and adolescents aged 10–18 years. 1815 valid questionnaires were collected. Data analysis was performed using SPSS and AMOS software (version 26). To revise and test the reliability and validity of the COVID-19 stressors scale for children and adolescents, as well as to investigate the differences in stressors between rural and urban based on Big-Data Mining. The results of this study indicate that the revised COVID-19 stressors scale, which includes a four-factor model of disease stressors, information stressors, measure stressors, and environmental stressors, has good reliability and validity for children and adolescents aged 10–18 years in a Chinese context. Big data-based demographic analysis showed that children and adolescents living in urban areas were generally less stressed about the COVID-19 epidemic than in rural areas." @default.
- W4288049651 created "2022-07-27" @default.
- W4288049651 creator A5052663273 @default.
- W4288049651 creator A5090289237 @default.
- W4288049651 date "2022-02-26" @default.
- W4288049651 modified "2023-10-16" @default.
- W4288049651 title "Revision of the child and adolescent COVID-19 stressors scale and Big Data-Based Analysis of Disparities in Urban and Rural Areas" @default.
- W4288049651 cites W2316835450 @default.
- W4288049651 cites W2806538597 @default.
- W4288049651 cites W2811001418 @default.
- W4288049651 cites W3005886336 @default.
- W4288049651 cites W3037409097 @default.
- W4288049651 cites W3039044508 @default.
- W4288049651 cites W3043399947 @default.
- W4288049651 cites W3081595932 @default.
- W4288049651 cites W3083017511 @default.
- W4288049651 cites W3087786122 @default.
- W4288049651 cites W3092386566 @default.
- W4288049651 cites W3121436721 @default.
- W4288049651 cites W3130488176 @default.
- W4288049651 cites W3176900041 @default.
- W4288049651 cites W3182488934 @default.
- W4288049651 doi "https://doi.org/10.1145/3524383.3524393" @default.
- W4288049651 hasPublicationYear "2022" @default.
- W4288049651 type Work @default.
- W4288049651 citedByCount "0" @default.
- W4288049651 crossrefType "proceedings-article" @default.
- W4288049651 hasAuthorship W4288049651A5052663273 @default.
- W4288049651 hasAuthorship W4288049651A5090289237 @default.
- W4288049651 hasBestOaLocation W42880496511 @default.
- W4288049651 hasConcept C118552586 @default.
- W4288049651 hasConcept C125370674 @default.
- W4288049651 hasConcept C134362201 @default.
- W4288049651 hasConcept C15744967 @default.
- W4288049651 hasConcept C166957645 @default.
- W4288049651 hasConcept C205649164 @default.
- W4288049651 hasConcept C27415008 @default.
- W4288049651 hasConcept C2778755073 @default.
- W4288049651 hasConcept C2779343474 @default.
- W4288049651 hasConcept C58640448 @default.
- W4288049651 hasConcept C70410870 @default.
- W4288049651 hasConcept C71924100 @default.
- W4288049651 hasConcept C99454951 @default.
- W4288049651 hasConceptScore W4288049651C118552586 @default.
- W4288049651 hasConceptScore W4288049651C125370674 @default.
- W4288049651 hasConceptScore W4288049651C134362201 @default.
- W4288049651 hasConceptScore W4288049651C15744967 @default.
- W4288049651 hasConceptScore W4288049651C166957645 @default.
- W4288049651 hasConceptScore W4288049651C205649164 @default.
- W4288049651 hasConceptScore W4288049651C27415008 @default.
- W4288049651 hasConceptScore W4288049651C2778755073 @default.
- W4288049651 hasConceptScore W4288049651C2779343474 @default.
- W4288049651 hasConceptScore W4288049651C58640448 @default.
- W4288049651 hasConceptScore W4288049651C70410870 @default.
- W4288049651 hasConceptScore W4288049651C71924100 @default.
- W4288049651 hasConceptScore W4288049651C99454951 @default.
- W4288049651 hasLocation W42880496511 @default.
- W4288049651 hasOpenAccess W4288049651 @default.
- W4288049651 hasPrimaryLocation W42880496511 @default.
- W4288049651 hasRelatedWork W2138133709 @default.
- W4288049651 hasRelatedWork W2163241055 @default.
- W4288049651 hasRelatedWork W2370231063 @default.
- W4288049651 hasRelatedWork W2547680859 @default.
- W4288049651 hasRelatedWork W2560578425 @default.
- W4288049651 hasRelatedWork W2748952813 @default.
- W4288049651 hasRelatedWork W2899084033 @default.
- W4288049651 hasRelatedWork W3154684186 @default.
- W4288049651 hasRelatedWork W4225244470 @default.
- W4288049651 hasRelatedWork W75656401 @default.
- W4288049651 isParatext "false" @default.
- W4288049651 isRetracted "false" @default.
- W4288049651 workType "article" @default.