Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049693> ?p ?o ?g. }
- W4288049693 endingPage "284" @default.
- W4288049693 startingPage "264" @default.
- W4288049693 abstract "Gait recognition is an appealing biometric modality which aims to identify individuals based on the way they walk. Deep learning has reshaped the research landscape in this area since 2015 through the ability to automatically learn discriminative representations. Gait recognition methods based on deep learning now dominate the state-of-the-art in the field and have fostered real-world applications. In this paper, we present a comprehensive overview of breakthroughs and recent developments in gait recognition with deep learning, and cover broad topics including datasets, test protocols, state-of-the-art solutions, challenges, and future research directions. We first review the commonly used gait datasets along with the principles designed for evaluating them. We then propose a novel taxonomy made up of four separate dimensions namely body representation, temporal representation, feature representation, and neural architecture, to help characterize and organize the research landscape and literature in this area. Following our proposed taxonomy, a comprehensive survey of gait recognition methods using deep learning is presented with discussions on their performances, characteristics, advantages, and limitations. We conclude this survey with a discussion on current challenges and mention a number of promising directions for future research in gait recognition." @default.
- W4288049693 created "2022-07-27" @default.
- W4288049693 creator A5039812985 @default.
- W4288049693 creator A5088311682 @default.
- W4288049693 date "2023-01-01" @default.
- W4288049693 modified "2023-10-16" @default.
- W4288049693 title "Deep Gait Recognition: A Survey" @default.
- W4288049693 cites W13607926 @default.
- W4288049693 cites W1505602316 @default.
- W4288049693 cites W1564236611 @default.
- W4288049693 cites W1643810134 @default.
- W4288049693 cites W1797462219 @default.
- W4288049693 cites W1887734902 @default.
- W4288049693 cites W1954814386 @default.
- W4288049693 cites W1970493599 @default.
- W4288049693 cites W2000823852 @default.
- W4288049693 cites W2010780621 @default.
- W4288049693 cites W2018331988 @default.
- W4288049693 cites W2028000151 @default.
- W4288049693 cites W2050785999 @default.
- W4288049693 cites W2054968871 @default.
- W4288049693 cites W2055462907 @default.
- W4288049693 cites W2064675550 @default.
- W4288049693 cites W2072615210 @default.
- W4288049693 cites W2080982032 @default.
- W4288049693 cites W2097117768 @default.
- W4288049693 cites W2100445176 @default.
- W4288049693 cites W2115611150 @default.
- W4288049693 cites W2118671571 @default.
- W4288049693 cites W2120116058 @default.
- W4288049693 cites W2120146197 @default.
- W4288049693 cites W2120861453 @default.
- W4288049693 cites W2126680226 @default.
- W4288049693 cites W2126952237 @default.
- W4288049693 cites W2132083787 @default.
- W4288049693 cites W2136922672 @default.
- W4288049693 cites W2149516292 @default.
- W4288049693 cites W2151458682 @default.
- W4288049693 cites W2163922914 @default.
- W4288049693 cites W2169908475 @default.
- W4288049693 cites W2183341477 @default.
- W4288049693 cites W2194775991 @default.
- W4288049693 cites W2207258529 @default.
- W4288049693 cites W2212737779 @default.
- W4288049693 cites W2291015381 @default.
- W4288049693 cites W2322772590 @default.
- W4288049693 cites W2332551110 @default.
- W4288049693 cites W2354569516 @default.
- W4288049693 cites W2407362091 @default.
- W4288049693 cites W2414322197 @default.
- W4288049693 cites W2491263727 @default.
- W4288049693 cites W2503853096 @default.
- W4288049693 cites W2510190030 @default.
- W4288049693 cites W2515630407 @default.
- W4288049693 cites W2517225990 @default.
- W4288049693 cites W2519656895 @default.
- W4288049693 cites W2542803194 @default.
- W4288049693 cites W2545266736 @default.
- W4288049693 cites W2551082533 @default.
- W4288049693 cites W2558460151 @default.
- W4288049693 cites W2559085405 @default.
- W4288049693 cites W2580965437 @default.
- W4288049693 cites W2587215467 @default.
- W4288049693 cites W2590203987 @default.
- W4288049693 cites W2605655455 @default.
- W4288049693 cites W2606842801 @default.
- W4288049693 cites W2609963459 @default.
- W4288049693 cites W2612627974 @default.
- W4288049693 cites W2716916105 @default.
- W4288049693 cites W2730947821 @default.
- W4288049693 cites W2736191430 @default.
- W4288049693 cites W2737047298 @default.
- W4288049693 cites W2739325416 @default.
- W4288049693 cites W2750867444 @default.
- W4288049693 cites W2754428891 @default.
- W4288049693 cites W2754666677 @default.
- W4288049693 cites W2756073160 @default.
- W4288049693 cites W2757611655 @default.
- W4288049693 cites W2760814882 @default.
- W4288049693 cites W2763913564 @default.
- W4288049693 cites W2765328347 @default.
- W4288049693 cites W2766172911 @default.
- W4288049693 cites W2766232393 @default.
- W4288049693 cites W2782072221 @default.
- W4288049693 cites W2786437919 @default.
- W4288049693 cites W2786808285 @default.
- W4288049693 cites W2788751553 @default.
- W4288049693 cites W2789525912 @default.
- W4288049693 cites W2789834341 @default.
- W4288049693 cites W2790184137 @default.
- W4288049693 cites W2798101467 @default.
- W4288049693 cites W2802841625 @default.
- W4288049693 cites W2803380720 @default.
- W4288049693 cites W2804071079 @default.
- W4288049693 cites W2807461033 @default.
- W4288049693 cites W2807624910 @default.
- W4288049693 cites W2811352011 @default.
- W4288049693 cites W2886790699 @default.