Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049784> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4288049784 endingPage "16" @default.
- W4288049784 startingPage "9" @default.
- W4288049784 abstract "Objective To develop a risk prediction model combining pre/intraoperative risk factors and intraoperative vital signs for postoperative healthcare-associated infection(HAI)based on deep learning. Methods We carried out a retrospective study based on two randomized controlled trials(NCT02715076,ChiCTR-IPR-17011099).The patients who underwent elective radical resection of advanced digestive system tumor were included in this study.The primary outcome was HAI within 30 days after surgery.Logistic regression analysis and long short-term memory(LSTM)model based on iteratively occluding sections of the input were used for feature selection.The risk prediction model for postoperative HAI was developed based on deep learning,combining the selected pre/intraoperative risk factors and intraoperative vital signs,and was evaluated by comparison with other models.Finally,we adopted the simulated annealing algorithm to simulatively adjust the vital signs during surgery,trying to explore the adjustment system that can reduce the risk of HAI. Results A total of 839 patients were included in this study,of which 112(13.3%)developed HAI within 30 days after surgery.The selected pre/intraoperative risk factors included neoadjuvant chemotherapy,parenteral nutrition,esophagectomy,gastrectomy,colorectal resection,pancreatoduodenectomy,hepatic resection,intraoperative blood loss>500 ml,and anesthesia time>4 h.The intraoperative vital signs significantly associated with HAI were in an order of heart rate>core body temperature>systolic blood pressure>diastolic blood pressure.Compared with multivariable Logistic regression model,random forest model,and LSTM model including vital signs only,this deep learning-based prediction model performed best(ACC=0.733,F1=0.237,AUC=0.728).The simulation via simulated annealing algorithm reduced the incidence of postoperative HAI.Moreover,the incidence decreased most in the case of reducing the initial annealing temperature and choosing the last 20% of surgery procedure. Conclusions This study developed a risk prediction model for postoperative HAI based on deep learning,which combined pre/intraoperative risk factors and intraoperative basic vital signs.Using simulated annealing algorithm to adjust intraoperative vital signs could reduce the incidence of postoperative HAI to some extent." @default.
- W4288049784 created "2022-07-27" @default.
- W4288049784 creator A5005351185 @default.
- W4288049784 creator A5026531325 @default.
- W4288049784 creator A5034937360 @default.
- W4288049784 creator A5063357603 @default.
- W4288049784 date "2022-02-01" @default.
- W4288049784 modified "2023-10-14" @default.
- W4288049784 title "[Deep Learning-based Risk Prediction Model for Postoperative Healthcare-associated Infections]." @default.
- W4288049784 doi "https://doi.org/10.3881/j.issn.1000-503x.14013" @default.
- W4288049784 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35300759" @default.
- W4288049784 hasPublicationYear "2022" @default.
- W4288049784 type Work @default.
- W4288049784 citedByCount "0" @default.
- W4288049784 crossrefType "journal-article" @default.
- W4288049784 hasAuthorship W4288049784A5005351185 @default.
- W4288049784 hasAuthorship W4288049784A5026531325 @default.
- W4288049784 hasAuthorship W4288049784A5034937360 @default.
- W4288049784 hasAuthorship W4288049784A5063357603 @default.
- W4288049784 hasConcept C121608353 @default.
- W4288049784 hasConcept C126322002 @default.
- W4288049784 hasConcept C141071460 @default.
- W4288049784 hasConcept C151956035 @default.
- W4288049784 hasConcept C167135981 @default.
- W4288049784 hasConcept C2776890885 @default.
- W4288049784 hasConcept C2780470880 @default.
- W4288049784 hasConcept C71924100 @default.
- W4288049784 hasConcept C84393581 @default.
- W4288049784 hasConceptScore W4288049784C121608353 @default.
- W4288049784 hasConceptScore W4288049784C126322002 @default.
- W4288049784 hasConceptScore W4288049784C141071460 @default.
- W4288049784 hasConceptScore W4288049784C151956035 @default.
- W4288049784 hasConceptScore W4288049784C167135981 @default.
- W4288049784 hasConceptScore W4288049784C2776890885 @default.
- W4288049784 hasConceptScore W4288049784C2780470880 @default.
- W4288049784 hasConceptScore W4288049784C71924100 @default.
- W4288049784 hasConceptScore W4288049784C84393581 @default.
- W4288049784 hasIssue "1" @default.
- W4288049784 hasLocation W42880497841 @default.
- W4288049784 hasOpenAccess W4288049784 @default.
- W4288049784 hasPrimaryLocation W42880497841 @default.
- W4288049784 hasRelatedWork W13630841 @default.
- W4288049784 hasRelatedWork W14741513 @default.
- W4288049784 hasRelatedWork W15168913 @default.
- W4288049784 hasRelatedWork W18939118 @default.
- W4288049784 hasRelatedWork W19700527 @default.
- W4288049784 hasRelatedWork W21048398 @default.
- W4288049784 hasRelatedWork W3635225 @default.
- W4288049784 hasRelatedWork W4448858 @default.
- W4288049784 hasRelatedWork W6747963 @default.
- W4288049784 hasRelatedWork W19688870 @default.
- W4288049784 hasVolume "44" @default.
- W4288049784 isParatext "false" @default.
- W4288049784 isRetracted "false" @default.
- W4288049784 workType "article" @default.