Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288049798> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4288049798 abstract "The rapid development and deployment of network services has brought a series of challenges to researchers. On the one hand, the needs of Internet end users/applications reflect the characteristics of travel alienation, and they pursue different perspectives of service quality. On the other hand, with the explosive growth of information in the era of big data, a lot of private information is stored in the network. End users/applications naturally start to pay attention to network security. In order to solve the requirements of differentiated quality of service (QoS) and security, this paper proposes a virtual network embedding (VNE) algorithm based on deep reinforcement learning (DRL), aiming at the CPU, bandwidth, delay and security attributes of substrate network. DRL agent is trained in the network environment constructed by the above attributes. The purpose is to deduce the mapping probability of each substrate node and map the virtual node according to this probability. Finally, the breadth first strategy (BFS) is used to map the virtual links. In the experimental stage, the algorithm based on DRL is compared with other representative algorithms in three aspects: long term average revenue, long term revenue consumption ratio and acceptance rate. The results show that the algorithm proposed in this paper has achieved good experimental results, which proves that the algorithm can be effectively applied to solve the end user/application differentiated QoS and security requirements." @default.
- W4288049798 created "2022-07-27" @default.
- W4288049798 creator A5000292528 @default.
- W4288049798 creator A5007559123 @default.
- W4288049798 creator A5036704324 @default.
- W4288049798 creator A5045435869 @default.
- W4288049798 creator A5055838753 @default.
- W4288049798 creator A5067299655 @default.
- W4288049798 date "2022-02-02" @default.
- W4288049798 modified "2023-10-16" @default.
- W4288049798 title "VNE Solution for Network Differentiated QoS and Security Requirements: From the Perspective of Deep Reinforcement Learning" @default.
- W4288049798 doi "https://doi.org/10.48550/arxiv.2202.01362" @default.
- W4288049798 hasPublicationYear "2022" @default.
- W4288049798 type Work @default.
- W4288049798 citedByCount "0" @default.
- W4288049798 crossrefType "posted-content" @default.
- W4288049798 hasAuthorship W4288049798A5000292528 @default.
- W4288049798 hasAuthorship W4288049798A5007559123 @default.
- W4288049798 hasAuthorship W4288049798A5036704324 @default.
- W4288049798 hasAuthorship W4288049798A5045435869 @default.
- W4288049798 hasAuthorship W4288049798A5055838753 @default.
- W4288049798 hasAuthorship W4288049798A5067299655 @default.
- W4288049798 hasBestOaLocation W42880497981 @default.
- W4288049798 hasConcept C110875604 @default.
- W4288049798 hasConcept C111472728 @default.
- W4288049798 hasConcept C120314980 @default.
- W4288049798 hasConcept C121955636 @default.
- W4288049798 hasConcept C127413603 @default.
- W4288049798 hasConcept C136764020 @default.
- W4288049798 hasConcept C138885662 @default.
- W4288049798 hasConcept C144133560 @default.
- W4288049798 hasConcept C154945302 @default.
- W4288049798 hasConcept C182590292 @default.
- W4288049798 hasConcept C195487862 @default.
- W4288049798 hasConcept C2776257435 @default.
- W4288049798 hasConcept C2779530757 @default.
- W4288049798 hasConcept C31258907 @default.
- W4288049798 hasConcept C38822068 @default.
- W4288049798 hasConcept C41008148 @default.
- W4288049798 hasConcept C5119721 @default.
- W4288049798 hasConcept C62611344 @default.
- W4288049798 hasConcept C66938386 @default.
- W4288049798 hasConcept C97541855 @default.
- W4288049798 hasConceptScore W4288049798C110875604 @default.
- W4288049798 hasConceptScore W4288049798C111472728 @default.
- W4288049798 hasConceptScore W4288049798C120314980 @default.
- W4288049798 hasConceptScore W4288049798C121955636 @default.
- W4288049798 hasConceptScore W4288049798C127413603 @default.
- W4288049798 hasConceptScore W4288049798C136764020 @default.
- W4288049798 hasConceptScore W4288049798C138885662 @default.
- W4288049798 hasConceptScore W4288049798C144133560 @default.
- W4288049798 hasConceptScore W4288049798C154945302 @default.
- W4288049798 hasConceptScore W4288049798C182590292 @default.
- W4288049798 hasConceptScore W4288049798C195487862 @default.
- W4288049798 hasConceptScore W4288049798C2776257435 @default.
- W4288049798 hasConceptScore W4288049798C2779530757 @default.
- W4288049798 hasConceptScore W4288049798C31258907 @default.
- W4288049798 hasConceptScore W4288049798C38822068 @default.
- W4288049798 hasConceptScore W4288049798C41008148 @default.
- W4288049798 hasConceptScore W4288049798C5119721 @default.
- W4288049798 hasConceptScore W4288049798C62611344 @default.
- W4288049798 hasConceptScore W4288049798C66938386 @default.
- W4288049798 hasConceptScore W4288049798C97541855 @default.
- W4288049798 hasLocation W42880497981 @default.
- W4288049798 hasLocation W42880497982 @default.
- W4288049798 hasLocation W42880497983 @default.
- W4288049798 hasOpenAccess W4288049798 @default.
- W4288049798 hasPrimaryLocation W42880497981 @default.
- W4288049798 hasRelatedWork W1485627940 @default.
- W4288049798 hasRelatedWork W1504006543 @default.
- W4288049798 hasRelatedWork W1576039592 @default.
- W4288049798 hasRelatedWork W1591008877 @default.
- W4288049798 hasRelatedWork W2104442742 @default.
- W4288049798 hasRelatedWork W2130966263 @default.
- W4288049798 hasRelatedWork W2133347274 @default.
- W4288049798 hasRelatedWork W2143765364 @default.
- W4288049798 hasRelatedWork W2158265795 @default.
- W4288049798 hasRelatedWork W4281686974 @default.
- W4288049798 isParatext "false" @default.
- W4288049798 isRetracted "false" @default.
- W4288049798 workType "article" @default.