Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288059652> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4288059652 endingPage "110" @default.
- W4288059652 startingPage "97" @default.
- W4288059652 abstract "To resolve the finite computing precision problem in chaotic cryptography, and the security and efficiency drawbacks of deep learning-based image cryptosystems, an image encryption framework with low computing precision is presented based on three-dimensional Boolean convolution neural network (3D-BCNN). Unlike traditional CNN, the proposed 3D-BCNN is composed of only convolutional layers, in which a cross-channel 3-D Boolean convolution operation is devised without training and parameter optimization. To strengthen the security and sensitivity of the cryptosystem, the kernels and convolutional matrices are generated by the combined prime modulo multiplicative linear congruence generators, SHA-1, and a plain-image. All operations of 3D-BCNN can be conducted on devices with 8-bit word length, so the proposed encryption scheme could work well with low computing precision. Simulation results demonstrate that, with the largest computing accuracy 2−8, the proposed encryption scheme has high security and low time complexity, and can withstand various attacks." @default.
- W4288059652 created "2022-07-28" @default.
- W4288059652 creator A5005904745 @default.
- W4288059652 creator A5011963985 @default.
- W4288059652 creator A5023196979 @default.
- W4288059652 creator A5025009140 @default.
- W4288059652 date "2022-10-01" @default.
- W4288059652 modified "2023-10-16" @default.
- W4288059652 title "3D-BCNN-Based Image Encryption With Finite Computing Precision" @default.
- W4288059652 cites W2010668061 @default.
- W4288059652 cites W2019829283 @default.
- W4288059652 cites W2068684969 @default.
- W4288059652 cites W2081388274 @default.
- W4288059652 cites W2112796928 @default.
- W4288059652 cites W2884201190 @default.
- W4288059652 cites W2914178465 @default.
- W4288059652 cites W2917426586 @default.
- W4288059652 cites W2980156420 @default.
- W4288059652 cites W3035934015 @default.
- W4288059652 cites W3044173375 @default.
- W4288059652 cites W3046108963 @default.
- W4288059652 cites W3048134800 @default.
- W4288059652 cites W3123361482 @default.
- W4288059652 cites W3197812980 @default.
- W4288059652 cites W3210148530 @default.
- W4288059652 cites W3214793094 @default.
- W4288059652 cites W4205557962 @default.
- W4288059652 cites W4206197292 @default.
- W4288059652 doi "https://doi.org/10.1109/mmul.2022.3194066" @default.
- W4288059652 hasPublicationYear "2022" @default.
- W4288059652 type Work @default.
- W4288059652 citedByCount "0" @default.
- W4288059652 crossrefType "journal-article" @default.
- W4288059652 hasAuthorship W4288059652A5005904745 @default.
- W4288059652 hasAuthorship W4288059652A5011963985 @default.
- W4288059652 hasAuthorship W4288059652A5023196979 @default.
- W4288059652 hasAuthorship W4288059652A5025009140 @default.
- W4288059652 hasConcept C111919701 @default.
- W4288059652 hasConcept C113775141 @default.
- W4288059652 hasConcept C11413529 @default.
- W4288059652 hasConcept C148730421 @default.
- W4288059652 hasConcept C154945302 @default.
- W4288059652 hasConcept C178489894 @default.
- W4288059652 hasConcept C179799912 @default.
- W4288059652 hasConcept C41008148 @default.
- W4288059652 hasConcept C45347329 @default.
- W4288059652 hasConcept C50644808 @default.
- W4288059652 hasConcept C6295992 @default.
- W4288059652 hasConcept C80444323 @default.
- W4288059652 hasConcept C81363708 @default.
- W4288059652 hasConceptScore W4288059652C111919701 @default.
- W4288059652 hasConceptScore W4288059652C113775141 @default.
- W4288059652 hasConceptScore W4288059652C11413529 @default.
- W4288059652 hasConceptScore W4288059652C148730421 @default.
- W4288059652 hasConceptScore W4288059652C154945302 @default.
- W4288059652 hasConceptScore W4288059652C178489894 @default.
- W4288059652 hasConceptScore W4288059652C179799912 @default.
- W4288059652 hasConceptScore W4288059652C41008148 @default.
- W4288059652 hasConceptScore W4288059652C45347329 @default.
- W4288059652 hasConceptScore W4288059652C50644808 @default.
- W4288059652 hasConceptScore W4288059652C6295992 @default.
- W4288059652 hasConceptScore W4288059652C80444323 @default.
- W4288059652 hasConceptScore W4288059652C81363708 @default.
- W4288059652 hasFunder F4320321001 @default.
- W4288059652 hasIssue "4" @default.
- W4288059652 hasLocation W42880596521 @default.
- W4288059652 hasOpenAccess W4288059652 @default.
- W4288059652 hasPrimaryLocation W42880596521 @default.
- W4288059652 hasRelatedWork W2083110660 @default.
- W4288059652 hasRelatedWork W2146876110 @default.
- W4288059652 hasRelatedWork W2186793662 @default.
- W4288059652 hasRelatedWork W3047501180 @default.
- W4288059652 hasRelatedWork W3147135027 @default.
- W4288059652 hasRelatedWork W3186605161 @default.
- W4288059652 hasRelatedWork W4281491020 @default.
- W4288059652 hasRelatedWork W4312551941 @default.
- W4288059652 hasRelatedWork W4316804335 @default.
- W4288059652 hasRelatedWork W2515205486 @default.
- W4288059652 hasVolume "29" @default.
- W4288059652 isParatext "false" @default.
- W4288059652 isRetracted "false" @default.
- W4288059652 workType "article" @default.