Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288064936> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4288064936 endingPage "510" @default.
- W4288064936 startingPage "501" @default.
- W4288064936 abstract "Since a long years, agriculture is considered as a major profession for livelihoods of the Indians. Still, agriculture is not profitable as many farmers take the worse step as they cannot survive from the burden of loans. So, one such place where there is yet large scope to develop is agriculture. In comparison with other countries, India has the highest production rate in agriculture. However, still, most agricultural fields are underdeveloped due to the lack of deployment of ecosystem control technologies. Agriculture when combined with technology can bring the finest results. Crop yield depends on multiple climatic conditions such as air temperature, soil temperature, humidity, and soil moisture. In general, farmers depend on self-monitoring and experience for harvesting fields. Scarcity of water is a main issue in today’s life. This scarcity is affecting people worldwide. So water is also a vital component of crop yield, here we are considering rainfall instead direct water. Predicting the crop selection/yield in advance of its harvest would help the policymakers and farmers for taking appropriate measures for farming, marketing, and storage. Thus, in this paper we propose a crop selection using machine learning technique as support vector machine (SVM) and polynomial regression. This model will help the farmers to know the yield of their crop before cultivating the agricultural field and thus help them to make the appropriate decisions. It attempts to solve the issue by building a prototype of an interactive prediction system. Accurate yield prediction is required to be done after understanding the functional relationship between yield and these parameters because along with all advances in the machines and technologies used in farming, useful and accurate information about different matters also plays a significant role in it. In this paper, we have simulated SVM and polynomial regression technique to predict which crop can yield better profit. Both of the models are simulated comprehensively on the Indian dataset, and an analytical report has been presented." @default.
- W4288064936 created "2022-07-28" @default.
- W4288064936 creator A5014046930 @default.
- W4288064936 creator A5031083769 @default.
- W4288064936 creator A5031396614 @default.
- W4288064936 creator A5063083721 @default.
- W4288064936 creator A5079958267 @default.
- W4288064936 date "2022-01-01" @default.
- W4288064936 modified "2023-09-24" @default.
- W4288064936 title "Crop Recommendation System Using Support Vector Machine Considering Indian Dataset" @default.
- W4288064936 cites W1511445453 @default.
- W4288064936 cites W2805142011 @default.
- W4288064936 cites W2912213862 @default.
- W4288064936 cites W2912459908 @default.
- W4288064936 cites W2942076272 @default.
- W4288064936 cites W3025529660 @default.
- W4288064936 cites W3046472536 @default.
- W4288064936 cites W3079760979 @default.
- W4288064936 cites W3173500524 @default.
- W4288064936 doi "https://doi.org/10.1007/978-981-19-1018-0_43" @default.
- W4288064936 hasPublicationYear "2022" @default.
- W4288064936 type Work @default.
- W4288064936 citedByCount "0" @default.
- W4288064936 crossrefType "book-chapter" @default.
- W4288064936 hasAuthorship W4288064936A5014046930 @default.
- W4288064936 hasAuthorship W4288064936A5031083769 @default.
- W4288064936 hasAuthorship W4288064936A5031396614 @default.
- W4288064936 hasAuthorship W4288064936A5063083721 @default.
- W4288064936 hasAuthorship W4288064936A5079958267 @default.
- W4288064936 hasConcept C109747225 @default.
- W4288064936 hasConcept C118518473 @default.
- W4288064936 hasConcept C120217122 @default.
- W4288064936 hasConcept C126343540 @default.
- W4288064936 hasConcept C127413603 @default.
- W4288064936 hasConcept C134121241 @default.
- W4288064936 hasConcept C144133560 @default.
- W4288064936 hasConcept C162324750 @default.
- W4288064936 hasConcept C166957645 @default.
- W4288064936 hasConcept C175444787 @default.
- W4288064936 hasConcept C191897082 @default.
- W4288064936 hasConcept C192562407 @default.
- W4288064936 hasConcept C205649164 @default.
- W4288064936 hasConcept C39432304 @default.
- W4288064936 hasConcept C3987366 @default.
- W4288064936 hasConcept C51193700 @default.
- W4288064936 hasConcept C54286561 @default.
- W4288064936 hasConcept C6557445 @default.
- W4288064936 hasConcept C86803240 @default.
- W4288064936 hasConcept C88463610 @default.
- W4288064936 hasConceptScore W4288064936C109747225 @default.
- W4288064936 hasConceptScore W4288064936C118518473 @default.
- W4288064936 hasConceptScore W4288064936C120217122 @default.
- W4288064936 hasConceptScore W4288064936C126343540 @default.
- W4288064936 hasConceptScore W4288064936C127413603 @default.
- W4288064936 hasConceptScore W4288064936C134121241 @default.
- W4288064936 hasConceptScore W4288064936C144133560 @default.
- W4288064936 hasConceptScore W4288064936C162324750 @default.
- W4288064936 hasConceptScore W4288064936C166957645 @default.
- W4288064936 hasConceptScore W4288064936C175444787 @default.
- W4288064936 hasConceptScore W4288064936C191897082 @default.
- W4288064936 hasConceptScore W4288064936C192562407 @default.
- W4288064936 hasConceptScore W4288064936C205649164 @default.
- W4288064936 hasConceptScore W4288064936C39432304 @default.
- W4288064936 hasConceptScore W4288064936C3987366 @default.
- W4288064936 hasConceptScore W4288064936C51193700 @default.
- W4288064936 hasConceptScore W4288064936C54286561 @default.
- W4288064936 hasConceptScore W4288064936C6557445 @default.
- W4288064936 hasConceptScore W4288064936C86803240 @default.
- W4288064936 hasConceptScore W4288064936C88463610 @default.
- W4288064936 hasLocation W42880649361 @default.
- W4288064936 hasOpenAccess W4288064936 @default.
- W4288064936 hasPrimaryLocation W42880649361 @default.
- W4288064936 hasRelatedWork W2041488363 @default.
- W4288064936 hasRelatedWork W2353782740 @default.
- W4288064936 hasRelatedWork W2366445448 @default.
- W4288064936 hasRelatedWork W2523173884 @default.
- W4288064936 hasRelatedWork W3109132290 @default.
- W4288064936 hasRelatedWork W4221121366 @default.
- W4288064936 hasRelatedWork W4288064936 @default.
- W4288064936 hasRelatedWork W4321608687 @default.
- W4288064936 hasRelatedWork W4324121522 @default.
- W4288064936 hasRelatedWork W4378587394 @default.
- W4288064936 isParatext "false" @default.
- W4288064936 isRetracted "false" @default.
- W4288064936 workType "book-chapter" @default.