Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288077103> ?p ?o ?g. }
- W4288077103 endingPage "155" @default.
- W4288077103 startingPage "133" @default.
- W4288077103 abstract "Summary Financial statement fraud is a global problem for investors, audit firms, regulators, and other stakeholders. Fraud detection can be regarded as a binary classification problem with a false negative being more expensive than a false positive. Although existing studies have made great efforts to detect fraud using various data‐mining techniques, the difference in misclassification costs is seldom considered. In this study, we propose a cost‐sensitive cascade forest (CSCF) for fraud detection, which places heavy penalty on false negative prediction and self‐adjusts the depth of a cascade forest according to the classifier’s recall (i.e. the classifier’s sensitivity). As missing values are ubiquitous in fraud research, we also explore the effect of selected missing data treatments on prediction performance, including complete case analysis, three selected classic statistical mechanisms (zero, mean, and modified mean imputation), and two machine learning (K‐nearest neighbor [KNN] and random forest [RF]) approaches. The experimental results show that the proposed CSCF significantly improves the fraud prediction in comparison with one of the latest fraud detection models using the RUSBoost algorithm. Comparing different missing value treatments, even though RUSBoost and CSCF perform well when using complete case analysis, we find that the best performance is achieved when CSCF is used with missing data imputed as zero. Such treatment further improves the performance, and results in an area under curve (AUC) score of 0.82 compared to the highest AUC (0.71) from the baseline model. Supplementary analysis further reveals that the low AUC of complete case analysis for the two examined models persists under different training sizes. Thus, our findings shed light on the potential benefits of missing value imputation for the model’s performance for fraud detection." @default.
- W4288077103 created "2022-07-28" @default.
- W4288077103 creator A5034220460 @default.
- W4288077103 creator A5041993945 @default.
- W4288077103 creator A5074213114 @default.
- W4288077103 date "2022-07-01" @default.
- W4288077103 modified "2023-09-26" @default.
- W4288077103 title "Enhanced financial fraud detection using cost‐sensitive cascade forest with missing value imputation" @default.
- W4288077103 cites W1120269880 @default.
- W4288077103 cites W1513289763 @default.
- W4288077103 cites W1906794760 @default.
- W4288077103 cites W1968433094 @default.
- W4288077103 cites W1973817450 @default.
- W4288077103 cites W1977185509 @default.
- W4288077103 cites W1983479840 @default.
- W4288077103 cites W1995455337 @default.
- W4288077103 cites W1997437882 @default.
- W4288077103 cites W2001723049 @default.
- W4288077103 cites W2005248249 @default.
- W4288077103 cites W2026572607 @default.
- W4288077103 cites W2052275624 @default.
- W4288077103 cites W2069870183 @default.
- W4288077103 cites W2071767222 @default.
- W4288077103 cites W2085766370 @default.
- W4288077103 cites W2099454382 @default.
- W4288077103 cites W2118978333 @default.
- W4288077103 cites W2119191234 @default.
- W4288077103 cites W2132966115 @default.
- W4288077103 cites W2135085154 @default.
- W4288077103 cites W2138711024 @default.
- W4288077103 cites W2142261479 @default.
- W4288077103 cites W2149535930 @default.
- W4288077103 cites W2155653793 @default.
- W4288077103 cites W2158339117 @default.
- W4288077103 cites W2167332641 @default.
- W4288077103 cites W2171629518 @default.
- W4288077103 cites W2172852798 @default.
- W4288077103 cites W2315678552 @default.
- W4288077103 cites W2324602164 @default.
- W4288077103 cites W2345945023 @default.
- W4288077103 cites W2414539072 @default.
- W4288077103 cites W2480730463 @default.
- W4288077103 cites W2490971013 @default.
- W4288077103 cites W2547202110 @default.
- W4288077103 cites W2605402099 @default.
- W4288077103 cites W2610250061 @default.
- W4288077103 cites W2752704646 @default.
- W4288077103 cites W2972156159 @default.
- W4288077103 cites W2997680655 @default.
- W4288077103 cites W3035460133 @default.
- W4288077103 cites W3092415316 @default.
- W4288077103 cites W3109520543 @default.
- W4288077103 cites W3121420751 @default.
- W4288077103 cites W3121722682 @default.
- W4288077103 cites W3121900013 @default.
- W4288077103 cites W3121910114 @default.
- W4288077103 cites W3124417763 @default.
- W4288077103 cites W3125433491 @default.
- W4288077103 cites W3125614333 @default.
- W4288077103 cites W3125872236 @default.
- W4288077103 cites W3125924374 @default.
- W4288077103 cites W3131164206 @default.
- W4288077103 cites W3166152974 @default.
- W4288077103 cites W4232478844 @default.
- W4288077103 cites W4232714830 @default.
- W4288077103 doi "https://doi.org/10.1002/isaf.1517" @default.
- W4288077103 hasPublicationYear "2022" @default.
- W4288077103 type Work @default.
- W4288077103 citedByCount "0" @default.
- W4288077103 crossrefType "journal-article" @default.
- W4288077103 hasAuthorship W4288077103A5034220460 @default.
- W4288077103 hasAuthorship W4288077103A5041993945 @default.
- W4288077103 hasAuthorship W4288077103A5074213114 @default.
- W4288077103 hasConcept C105795698 @default.
- W4288077103 hasConcept C119857082 @default.
- W4288077103 hasConcept C121955636 @default.
- W4288077103 hasConcept C12267149 @default.
- W4288077103 hasConcept C124101348 @default.
- W4288077103 hasConcept C127413603 @default.
- W4288077103 hasConcept C144133560 @default.
- W4288077103 hasConcept C154945302 @default.
- W4288077103 hasConcept C169258074 @default.
- W4288077103 hasConcept C199521495 @default.
- W4288077103 hasConcept C2781027943 @default.
- W4288077103 hasConcept C33923547 @default.
- W4288077103 hasConcept C34146451 @default.
- W4288077103 hasConcept C41008148 @default.
- W4288077103 hasConcept C42360764 @default.
- W4288077103 hasConcept C58041806 @default.
- W4288077103 hasConcept C66905080 @default.
- W4288077103 hasConcept C9357733 @default.
- W4288077103 hasConcept C95623464 @default.
- W4288077103 hasConceptScore W4288077103C105795698 @default.
- W4288077103 hasConceptScore W4288077103C119857082 @default.
- W4288077103 hasConceptScore W4288077103C121955636 @default.
- W4288077103 hasConceptScore W4288077103C12267149 @default.
- W4288077103 hasConceptScore W4288077103C124101348 @default.
- W4288077103 hasConceptScore W4288077103C127413603 @default.