Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288077327> ?p ?o ?g. }
- W4288077327 abstract "Background The presence of left ventricular (LV) wall motion abnormalities (WMA) is an independent indicator of adverse cardiovascular events in patients with cardiovascular diseases. We develop and evaluate the ability to detect cardiac wall motion abnormalities (WMA) from dynamic volume renderings (VR) of clinical 4D computed tomography (CT) angiograms using a deep learning (DL) framework. Methods Three hundred forty-three ECG-gated cardiac 4DCT studies (age: 61 ± 15, 60.1% male) were retrospectively evaluated. Volume-rendering videos of the LV blood pool were generated from 6 different perspectives (i.e., six views corresponding to every 60-degree rotation around the LV long axis); resulting in 2058 unique videos. Ground-truth WMA classification for each video was performed by evaluating the extent of impaired regional shortening visible (measured in the original 4DCT data). DL classification of each video for the presence of WMA was performed by first extracting image features frame-by-frame using a pre-trained Inception network and then evaluating the set of features using a long short-term memory network. Data were split into 60% for 5-fold cross-validation and 40% for testing. Results Volume rendering videos represent ~800-fold data compression of the 4DCT volumes. Per-video DL classification performance was high for both cross-validation (accuracy = 93.1%, sensitivity = 90.0% and specificity = 95.1%, κ: 0.86) and testing (90.9, 90.2, and 91.4% respectively, κ: 0.81). Per-study performance was also high (cross-validation: 93.7, 93.5, 93.8%, κ: 0.87; testing: 93.5, 91.9, 94.7%, κ: 0.87). By re-binning per-video results into the 6 regional views of the LV we showed DL was accurate (mean accuracy = 93.1 and 90.9% for cross-validation and testing cohort, respectively) for every region. DL classification strongly agreed (accuracy = 91.0%, κ: 0.81) with expert visual assessment. Conclusions Dynamic volume rendering of the LV blood pool combined with DL classification can accurately detect regional WMA from cardiac CT." @default.
- W4288077327 created "2022-07-28" @default.
- W4288077327 creator A5013371119 @default.
- W4288077327 creator A5039515595 @default.
- W4288077327 creator A5046259568 @default.
- W4288077327 creator A5067228003 @default.
- W4288077327 creator A5071513220 @default.
- W4288077327 creator A5077565827 @default.
- W4288077327 creator A5089502168 @default.
- W4288077327 date "2022-07-28" @default.
- W4288077327 modified "2023-10-15" @default.
- W4288077327 title "Detection of left ventricular wall motion abnormalities from volume rendering of 4DCT cardiac angiograms using deep learning" @default.
- W4288077327 cites W1972715974 @default.
- W4288077327 cites W1993227690 @default.
- W4288077327 cites W2033772107 @default.
- W4288077327 cites W2034890293 @default.
- W4288077327 cites W2057090264 @default.
- W4288077327 cites W2064675550 @default.
- W4288077327 cites W2090213569 @default.
- W4288077327 cites W2098841875 @default.
- W4288077327 cites W2108598243 @default.
- W4288077327 cites W2115185697 @default.
- W4288077327 cites W2118333481 @default.
- W4288077327 cites W2118485594 @default.
- W4288077327 cites W2119231080 @default.
- W4288077327 cites W2127890285 @default.
- W4288077327 cites W2145233450 @default.
- W4288077327 cites W2160133249 @default.
- W4288077327 cites W2171782044 @default.
- W4288077327 cites W2217610405 @default.
- W4288077327 cites W2339147759 @default.
- W4288077327 cites W2496788183 @default.
- W4288077327 cites W2531207691 @default.
- W4288077327 cites W2531380628 @default.
- W4288077327 cites W2547853544 @default.
- W4288077327 cites W2753044865 @default.
- W4288077327 cites W2769042349 @default.
- W4288077327 cites W2802580239 @default.
- W4288077327 cites W2942777796 @default.
- W4288077327 cites W2963125977 @default.
- W4288077327 cites W2964956561 @default.
- W4288077327 cites W2980097659 @default.
- W4288077327 cites W2980231807 @default.
- W4288077327 cites W2995528796 @default.
- W4288077327 cites W3138268379 @default.
- W4288077327 cites W3161432833 @default.
- W4288077327 cites W3164640792 @default.
- W4288077327 cites W3204839353 @default.
- W4288077327 doi "https://doi.org/10.3389/fcvm.2022.919751" @default.
- W4288077327 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35966529" @default.
- W4288077327 hasPublicationYear "2022" @default.
- W4288077327 type Work @default.
- W4288077327 citedByCount "2" @default.
- W4288077327 countsByYear W42880773272022 @default.
- W4288077327 countsByYear W42880773272023 @default.
- W4288077327 crossrefType "journal-article" @default.
- W4288077327 hasAuthorship W4288077327A5013371119 @default.
- W4288077327 hasAuthorship W4288077327A5039515595 @default.
- W4288077327 hasAuthorship W4288077327A5046259568 @default.
- W4288077327 hasAuthorship W4288077327A5067228003 @default.
- W4288077327 hasAuthorship W4288077327A5071513220 @default.
- W4288077327 hasAuthorship W4288077327A5077565827 @default.
- W4288077327 hasAuthorship W4288077327A5089502168 @default.
- W4288077327 hasBestOaLocation W42880773271 @default.
- W4288077327 hasConcept C126322002 @default.
- W4288077327 hasConcept C126838900 @default.
- W4288077327 hasConcept C146849305 @default.
- W4288077327 hasConcept C154945302 @default.
- W4288077327 hasConcept C164705383 @default.
- W4288077327 hasConcept C205711294 @default.
- W4288077327 hasConcept C2989005 @default.
- W4288077327 hasConcept C30769735 @default.
- W4288077327 hasConcept C41008148 @default.
- W4288077327 hasConcept C71924100 @default.
- W4288077327 hasConceptScore W4288077327C126322002 @default.
- W4288077327 hasConceptScore W4288077327C126838900 @default.
- W4288077327 hasConceptScore W4288077327C146849305 @default.
- W4288077327 hasConceptScore W4288077327C154945302 @default.
- W4288077327 hasConceptScore W4288077327C164705383 @default.
- W4288077327 hasConceptScore W4288077327C205711294 @default.
- W4288077327 hasConceptScore W4288077327C2989005 @default.
- W4288077327 hasConceptScore W4288077327C30769735 @default.
- W4288077327 hasConceptScore W4288077327C41008148 @default.
- W4288077327 hasConceptScore W4288077327C71924100 @default.
- W4288077327 hasFunder F4320306230 @default.
- W4288077327 hasFunder F4320337338 @default.
- W4288077327 hasLocation W42880773271 @default.
- W4288077327 hasLocation W42880773272 @default.
- W4288077327 hasLocation W42880773273 @default.
- W4288077327 hasLocation W42880773274 @default.
- W4288077327 hasOpenAccess W4288077327 @default.
- W4288077327 hasPrimaryLocation W42880773271 @default.
- W4288077327 hasRelatedWork W15287949 @default.
- W4288077327 hasRelatedWork W2000285361 @default.
- W4288077327 hasRelatedWork W2033498533 @default.
- W4288077327 hasRelatedWork W2049214470 @default.
- W4288077327 hasRelatedWork W2096175608 @default.
- W4288077327 hasRelatedWork W2187886257 @default.
- W4288077327 hasRelatedWork W2348607019 @default.
- W4288077327 hasRelatedWork W2549299049 @default.