Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288079375> ?p ?o ?g. }
- W4288079375 endingPage "A101" @default.
- W4288079375 startingPage "A101" @default.
- W4288079375 abstract "Context. Shocks are ubiquitous in the interstellar and intergalactic media, where their chemical and radiative signatures reveal the physical conditions in which they arise. Detailed astrochemical models of shocks at all velocities are necessary to understand the physics of many environments including protostellar outflows, supernova remnants, and galactic outflows. Aims. We present an accurate treatment of the self-generated ultraviolet (UV) radiation in models of intermediate velocity ( V S = 25–60 km s −1 ), stationary, weakly magnetised, J-type, molecular shocks. We show how these UV photons modify the structure and chemical properties of shocks and quantify how the initial mechanical energy is reprocessed into line emission. Methods. We develop an iterative scheme to calculate the self-consistent UV radiation field produced by molecular shocks. The shock solutions computed with the Paris–Durham shock code are post-processed using a multi-level accelerated Λ-iteration radiative transfer algorithm to compute Lyman α , Lyman β , and two-photon continuum emission. The subsequent impacts of these photons on the ionisation and dissociation of key atomic and molecular species as well as on the heating by the photoelectric effect are calculated by taking the wavelength dependent interaction cross-sections and the fluid velocity profile into account. This leads to an accurate description of the propagation of photons and the thermochemical properties of the gas in both the postshock region and in the material ahead of the shock called the radiative precursor. With this new treatment, we analyse a grid of shock models with velocities in the range V S = 25–60 km s −1 , propagating in dense ( n H ≥ 10 4 cm −3 ) and shielded gas. Results. Self-absorption traps Ly α photons in a small region in the shock, though a large fraction of this emission escapes by scattering into the line wings. We find a critical velocity V S ~ 30 km s −1 above which shocks generate Ly α emission with a photon flux exceeding the flux of the standard interstellar radiation field. The escaping photons generate a warm slab of gas ( T ~ 100 K) ahead of the shock front as well as pre-ionising C and S. Intermediate velocity molecular shocks are traced by bright emission of many atomic fine structure (e.g. O and S) and metastable (e.g. O and C) lines, substantive molecular emission (e.g. H 2 , OH, and CO), enhanced column densities of several species including CH + and HCO + , as well as a severe destruction of H 2 O. As much as 13–21% of the initial kinetic energy of the shock escapes in Ly α and Ly β photons if the dust opacity in the radiative precursor allows it. Conclusions. A rich molecular emission is produced by interstellar shocks regardless of the input mechanical energy. Atomic and molecular lines reprocess the quasi totality of the kinetic energy, allowing for the connection of observable emission to the driving source for that emission." @default.
- W4288079375 created "2022-07-28" @default.
- W4288079375 creator A5038704030 @default.
- W4288079375 creator A5054918987 @default.
- W4288079375 creator A5058041723 @default.
- W4288079375 creator A5090259393 @default.
- W4288079375 date "2020-11-01" @default.
- W4288079375 modified "2023-10-02" @default.
- W4288079375 title "Self-generated ultraviolet radiation in molecular shock waves" @default.
- W4288079375 cites W1540693023 @default.
- W4288079375 cites W1840902231 @default.
- W4288079375 cites W1964181290 @default.
- W4288079375 cites W1973196718 @default.
- W4288079375 cites W1976037002 @default.
- W4288079375 cites W1993230081 @default.
- W4288079375 cites W1995933122 @default.
- W4288079375 cites W2007156045 @default.
- W4288079375 cites W2032832347 @default.
- W4288079375 cites W2035910074 @default.
- W4288079375 cites W2041427343 @default.
- W4288079375 cites W2052183429 @default.
- W4288079375 cites W2057625398 @default.
- W4288079375 cites W2062505606 @default.
- W4288079375 cites W2063955318 @default.
- W4288079375 cites W2064529707 @default.
- W4288079375 cites W2087043769 @default.
- W4288079375 cites W2087609593 @default.
- W4288079375 cites W2088394312 @default.
- W4288079375 cites W2088566550 @default.
- W4288079375 cites W2091282522 @default.
- W4288079375 cites W2098485899 @default.
- W4288079375 cites W2100127246 @default.
- W4288079375 cites W2106688715 @default.
- W4288079375 cites W2116771206 @default.
- W4288079375 cites W2119131940 @default.
- W4288079375 cites W2165917395 @default.
- W4288079375 cites W2170243185 @default.
- W4288079375 cites W2577293978 @default.
- W4288079375 cites W2581442249 @default.
- W4288079375 cites W2589317285 @default.
- W4288079375 cites W2607056676 @default.
- W4288079375 cites W2624679004 @default.
- W4288079375 cites W2744260194 @default.
- W4288079375 cites W2962733182 @default.
- W4288079375 cites W3024983978 @default.
- W4288079375 cites W3099218590 @default.
- W4288079375 cites W3099697263 @default.
- W4288079375 cites W3099768924 @default.
- W4288079375 cites W3100177833 @default.
- W4288079375 cites W3100194897 @default.
- W4288079375 cites W3102150343 @default.
- W4288079375 cites W3103098502 @default.
- W4288079375 cites W3103446154 @default.
- W4288079375 cites W3103792374 @default.
- W4288079375 cites W3104584698 @default.
- W4288079375 cites W3105890802 @default.
- W4288079375 cites W3106379278 @default.
- W4288079375 cites W3124911158 @default.
- W4288079375 cites W4288083464 @default.
- W4288079375 doi "https://doi.org/10.1051/0004-6361/202038644" @default.
- W4288079375 hasPublicationYear "2020" @default.
- W4288079375 type Work @default.
- W4288079375 citedByCount "16" @default.
- W4288079375 countsByYear W42880793752021 @default.
- W4288079375 countsByYear W42880793752022 @default.
- W4288079375 countsByYear W42880793752023 @default.
- W4288079375 crossrefType "journal-article" @default.
- W4288079375 hasAuthorship W4288079375A5038704030 @default.
- W4288079375 hasAuthorship W4288079375A5054918987 @default.
- W4288079375 hasAuthorship W4288079375A5058041723 @default.
- W4288079375 hasAuthorship W4288079375A5090259393 @default.
- W4288079375 hasBestOaLocation W42880793751 @default.
- W4288079375 hasConcept C120665830 @default.
- W4288079375 hasConcept C121332964 @default.
- W4288079375 hasConcept C126322002 @default.
- W4288079375 hasConcept C127592171 @default.
- W4288079375 hasConcept C151730666 @default.
- W4288079375 hasConcept C153385146 @default.
- W4288079375 hasConcept C159317903 @default.
- W4288079375 hasConcept C196939603 @default.
- W4288079375 hasConcept C2779343474 @default.
- W4288079375 hasConcept C2781300812 @default.
- W4288079375 hasConcept C30475298 @default.
- W4288079375 hasConcept C44870925 @default.
- W4288079375 hasConcept C57879066 @default.
- W4288079375 hasConcept C70477161 @default.
- W4288079375 hasConcept C71924100 @default.
- W4288079375 hasConcept C74902906 @default.
- W4288079375 hasConcept C86803240 @default.
- W4288079375 hasConcept C98444146 @default.
- W4288079375 hasConceptScore W4288079375C120665830 @default.
- W4288079375 hasConceptScore W4288079375C121332964 @default.
- W4288079375 hasConceptScore W4288079375C126322002 @default.
- W4288079375 hasConceptScore W4288079375C127592171 @default.
- W4288079375 hasConceptScore W4288079375C151730666 @default.
- W4288079375 hasConceptScore W4288079375C153385146 @default.
- W4288079375 hasConceptScore W4288079375C159317903 @default.
- W4288079375 hasConceptScore W4288079375C196939603 @default.