Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288081090> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4288081090 endingPage "5200" @default.
- W4288081090 startingPage "5200" @default.
- W4288081090 abstract "In order to effectively solve the problem of low accuracy of seawater water quality prediction, an optimized water quality parameter prediction model is constructed in this paper. The model first screened the key factors of water quality data with the principal component analysis (PCA) algorithm, then realized the de-noising of the key factors of water quality data with an ensemble empirical mode decomposition (EEMD) algorithm, and the data were input into the two-dimensional convolutional neural network (2D-CNN) module to extract features, which were used for training and learning by attention, gated recurrent unit, and an encoder–decoder (attention–GRU–encoder–decoder, attention–GED) integrated module. The trained prediction model was used to predict the content of key parameters of water quality. In this paper, the water quality data of six typical online monitoring stations from 2017 to 2021 were used to verify the proposed model. The experimental results show that, based on short-term series prediction, the root mean square error (RMSE), mean absolute percentage error (MAPE), and decision coefficient (R2) were 0.246, 0.307, and 97.80%, respectively. Based on the long-term series prediction, RMSE, MAPE, and R2 were 0.878, 0.594, and 92.23%, respectively, which were all better than the prediction model based on an enhanced clustering algorithm and adam with a radial basis function neural network (ECA–Adam–RBFNN), a prediction model based on a softplus extreme learning machine method with partial least squares and particle swarm optimization (PSO–SELM–PLS), and a wavelet transform-depth Bi–S–SRU (Bi-directional Stacked Simple Recurrent Unit) prediction model. The PCA–EEMD–CNN–attention–GED prediction model not only has high prediction accuracy but can also provide a decision-making basis for the water quality control and management of aquaculture in the waters around Zhanjiang Bay." @default.
- W4288081090 created "2022-07-28" @default.
- W4288081090 creator A5003602471 @default.
- W4288081090 creator A5024948361 @default.
- W4288081090 creator A5043091074 @default.
- W4288081090 creator A5078095647 @default.
- W4288081090 date "2022-07-27" @default.
- W4288081090 modified "2023-10-18" @default.
- W4288081090 title "A PCA–EEMD–CNN–Attention–GRU–Encoder–Decoder Accurate Prediction Model for Key Parameters of Seawater Quality in Zhanjiang Bay" @default.
- W4288081090 cites W2052851995 @default.
- W4288081090 cites W2059738040 @default.
- W4288081090 cites W2936399818 @default.
- W4288081090 cites W2967059064 @default.
- W4288081090 cites W2967877666 @default.
- W4288081090 cites W2968862935 @default.
- W4288081090 cites W2969685114 @default.
- W4288081090 cites W2991014406 @default.
- W4288081090 cites W2998309280 @default.
- W4288081090 cites W3000150631 @default.
- W4288081090 cites W3001611209 @default.
- W4288081090 cites W3002387283 @default.
- W4288081090 cites W3005205558 @default.
- W4288081090 cites W3008298059 @default.
- W4288081090 cites W3011553730 @default.
- W4288081090 cites W3027864842 @default.
- W4288081090 cites W3092257762 @default.
- W4288081090 cites W3109795660 @default.
- W4288081090 cites W3142265327 @default.
- W4288081090 cites W3155272064 @default.
- W4288081090 cites W3160199700 @default.
- W4288081090 cites W3207393284 @default.
- W4288081090 cites W4223458449 @default.
- W4288081090 cites W4226372694 @default.
- W4288081090 cites W4282593802 @default.
- W4288081090 doi "https://doi.org/10.3390/ma15155200" @default.
- W4288081090 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35955136" @default.
- W4288081090 hasPublicationYear "2022" @default.
- W4288081090 type Work @default.
- W4288081090 citedByCount "1" @default.
- W4288081090 countsByYear W42880810902023 @default.
- W4288081090 crossrefType "journal-article" @default.
- W4288081090 hasAuthorship W4288081090A5003602471 @default.
- W4288081090 hasAuthorship W4288081090A5024948361 @default.
- W4288081090 hasAuthorship W4288081090A5043091074 @default.
- W4288081090 hasAuthorship W4288081090A5078095647 @default.
- W4288081090 hasBestOaLocation W42880810901 @default.
- W4288081090 hasConcept C105795698 @default.
- W4288081090 hasConcept C11413529 @default.
- W4288081090 hasConcept C139945424 @default.
- W4288081090 hasConcept C150217764 @default.
- W4288081090 hasConcept C153180895 @default.
- W4288081090 hasConcept C154945302 @default.
- W4288081090 hasConcept C26517878 @default.
- W4288081090 hasConcept C27438332 @default.
- W4288081090 hasConcept C33923547 @default.
- W4288081090 hasConcept C38652104 @default.
- W4288081090 hasConcept C41008148 @default.
- W4288081090 hasConcept C50644808 @default.
- W4288081090 hasConcept C81363708 @default.
- W4288081090 hasConcept C85617194 @default.
- W4288081090 hasConceptScore W4288081090C105795698 @default.
- W4288081090 hasConceptScore W4288081090C11413529 @default.
- W4288081090 hasConceptScore W4288081090C139945424 @default.
- W4288081090 hasConceptScore W4288081090C150217764 @default.
- W4288081090 hasConceptScore W4288081090C153180895 @default.
- W4288081090 hasConceptScore W4288081090C154945302 @default.
- W4288081090 hasConceptScore W4288081090C26517878 @default.
- W4288081090 hasConceptScore W4288081090C27438332 @default.
- W4288081090 hasConceptScore W4288081090C33923547 @default.
- W4288081090 hasConceptScore W4288081090C38652104 @default.
- W4288081090 hasConceptScore W4288081090C41008148 @default.
- W4288081090 hasConceptScore W4288081090C50644808 @default.
- W4288081090 hasConceptScore W4288081090C81363708 @default.
- W4288081090 hasConceptScore W4288081090C85617194 @default.
- W4288081090 hasIssue "15" @default.
- W4288081090 hasLocation W42880810901 @default.
- W4288081090 hasLocation W42880810902 @default.
- W4288081090 hasLocation W42880810903 @default.
- W4288081090 hasOpenAccess W4288081090 @default.
- W4288081090 hasPrimaryLocation W42880810901 @default.
- W4288081090 hasRelatedWork W2085553065 @default.
- W4288081090 hasRelatedWork W2348761159 @default.
- W4288081090 hasRelatedWork W2380927352 @default.
- W4288081090 hasRelatedWork W2767651786 @default.
- W4288081090 hasRelatedWork W2807954395 @default.
- W4288081090 hasRelatedWork W2912288872 @default.
- W4288081090 hasRelatedWork W3048981730 @default.
- W4288081090 hasRelatedWork W3178621026 @default.
- W4288081090 hasRelatedWork W4211209597 @default.
- W4288081090 hasRelatedWork W2137598809 @default.
- W4288081090 hasVolume "15" @default.
- W4288081090 isParatext "false" @default.
- W4288081090 isRetracted "false" @default.
- W4288081090 workType "article" @default.