Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288081194> ?p ?o ?g. }
- W4288081194 endingPage "5207" @default.
- W4288081194 startingPage "5207" @default.
- W4288081194 abstract "Incorporating waste material, such as recycled coarse aggregate concrete (RCAC), into construction material can reduce environmental pollution. It is also well-known that the inferior properties of recycled aggregates (RAs), when incorporated into concrete, can impact its mechanical properties, and it is necessary to evaluate the optimal performance. Accordingly, artificial intelligence has been used recently to evaluate the performance of concrete compressive behaviour for different types of construction material. Therefore, supervised machine learning techniques, i.e., DT-XG Boost, DT-Gradient Boosting, SVM-Bagging, and SVM-Adaboost, are executed in the current study to predict RCAC’s compressive strength. Additionally, SHapley Additive exPlanations (SHAP) analysis shows the influence of input parameters on the compressive strength of RCAC and the interactions between them. The correlation coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE) are used to assess the model’s performance. Subsequently, the k-fold cross-validation method is executed to validate the model’s performance. The R2 value of 0.98 from DT-Gradient Boosting supersedes those of the other methods, i.e., DT- XG Boost, SVM-Bagging, and SVM-Adaboost. The DT-Gradient Boosting model, with a higher R2 value and lower error (i.e., MAE, RMSE) values, had a better performance than the other ensemble techniques. The application of machine learning techniques for the prediction of concrete properties would consume fewer resources and take less time and effort for scholars in the respective engineering field. The forecasting of the proposed DT-Gradient Boosting models is in close agreement with the actual experimental results, as indicated by the assessment output showing the improved estimation of RCAC’s compressive strength." @default.
- W4288081194 created "2022-07-28" @default.
- W4288081194 creator A5001572579 @default.
- W4288081194 creator A5003971462 @default.
- W4288081194 creator A5007452190 @default.
- W4288081194 creator A5053593782 @default.
- W4288081194 creator A5086127179 @default.
- W4288081194 creator A5086426250 @default.
- W4288081194 date "2022-07-27" @default.
- W4288081194 modified "2023-10-16" @default.
- W4288081194 title "Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions" @default.
- W4288081194 cites W1678356000 @default.
- W4288081194 cites W1810120829 @default.
- W4288081194 cites W1966592368 @default.
- W4288081194 cites W1966854591 @default.
- W4288081194 cites W1969826978 @default.
- W4288081194 cites W1970926452 @default.
- W4288081194 cites W1975665439 @default.
- W4288081194 cites W1976397685 @default.
- W4288081194 cites W1978214613 @default.
- W4288081194 cites W1979701602 @default.
- W4288081194 cites W1980390276 @default.
- W4288081194 cites W1984459184 @default.
- W4288081194 cites W1984726798 @default.
- W4288081194 cites W1986750599 @default.
- W4288081194 cites W1993176235 @default.
- W4288081194 cites W2001705326 @default.
- W4288081194 cites W2014994344 @default.
- W4288081194 cites W2015675036 @default.
- W4288081194 cites W2029126466 @default.
- W4288081194 cites W2039464636 @default.
- W4288081194 cites W2040677529 @default.
- W4288081194 cites W2042013744 @default.
- W4288081194 cites W2051142619 @default.
- W4288081194 cites W2053167487 @default.
- W4288081194 cites W2059782888 @default.
- W4288081194 cites W2060027269 @default.
- W4288081194 cites W2066124661 @default.
- W4288081194 cites W2067147264 @default.
- W4288081194 cites W2072127453 @default.
- W4288081194 cites W2073497113 @default.
- W4288081194 cites W2075534594 @default.
- W4288081194 cites W2078206780 @default.
- W4288081194 cites W2078517924 @default.
- W4288081194 cites W2079020577 @default.
- W4288081194 cites W2082123627 @default.
- W4288081194 cites W2092017253 @default.
- W4288081194 cites W2092555235 @default.
- W4288081194 cites W2094400494 @default.
- W4288081194 cites W2124937094 @default.
- W4288081194 cites W2132145155 @default.
- W4288081194 cites W2134605633 @default.
- W4288081194 cites W2161715150 @default.
- W4288081194 cites W2195915872 @default.
- W4288081194 cites W2206000617 @default.
- W4288081194 cites W2221475138 @default.
- W4288081194 cites W2223491879 @default.
- W4288081194 cites W2313896244 @default.
- W4288081194 cites W2407463458 @default.
- W4288081194 cites W2503963865 @default.
- W4288081194 cites W2520696741 @default.
- W4288081194 cites W2523984406 @default.
- W4288081194 cites W2761392224 @default.
- W4288081194 cites W2797924852 @default.
- W4288081194 cites W2801473843 @default.
- W4288081194 cites W2801822775 @default.
- W4288081194 cites W2892741787 @default.
- W4288081194 cites W2913615002 @default.
- W4288081194 cites W2922287637 @default.
- W4288081194 cites W2936891363 @default.
- W4288081194 cites W2946768262 @default.
- W4288081194 cites W2955986121 @default.
- W4288081194 cites W2975892857 @default.
- W4288081194 cites W2976353133 @default.
- W4288081194 cites W2999615587 @default.
- W4288081194 cites W3005696792 @default.
- W4288081194 cites W3011540643 @default.
- W4288081194 cites W3013162424 @default.
- W4288081194 cites W3021553320 @default.
- W4288081194 cites W3034551228 @default.
- W4288081194 cites W3043436405 @default.
- W4288081194 cites W3044517459 @default.
- W4288081194 cites W3046761449 @default.
- W4288081194 cites W3085788056 @default.
- W4288081194 cites W3087991416 @default.
- W4288081194 cites W3099410181 @default.
- W4288081194 cites W3102476541 @default.
- W4288081194 cites W3102673610 @default.
- W4288081194 cites W3111056983 @default.
- W4288081194 cites W3125850143 @default.
- W4288081194 cites W3133067237 @default.
- W4288081194 cites W3157041743 @default.
- W4288081194 cites W3157776042 @default.
- W4288081194 cites W3168302336 @default.
- W4288081194 cites W3171064919 @default.
- W4288081194 cites W3173216349 @default.
- W4288081194 cites W3194752328 @default.
- W4288081194 cites W3202180088 @default.