Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288081346> ?p ?o ?g. }
- W4288081346 endingPage "3605" @default.
- W4288081346 startingPage "3605" @default.
- W4288081346 abstract "In complex classification tasks, such as the classification of heterogeneous vegetation covers, the high similarity between classes can confuse the classification algorithm when assigning the correct class labels to unlabelled samples. To overcome this problem, this study aimed to develop a classification method by integrating graph-based semi-supervised learning (SSL) and an expert system (ES). The proposed method was applied to vegetation cover classification in a wetland in the Netherlands using Sentinel-2 and RapidEye imagery. Our method consisted of three main steps: object-based image analysis (OBIA), integration of SSL and an ES (SSLES), and finally, random forest classification. The generated image objects and the related features were used to construct the graph in SSL. Then, an independently developed and trained ES was used in the labelling stage of SSL to reduce the uncertainty of the process, before the final classification. Different spectral band combinations of Sentinel-2 were then considered to improve the vegetation classification. Our results show that integrating SSL and an ES can result in significantly higher classification accuracy (83.6%) compared to a supervised classifier (64.9%), SSL alone (71.8%), and ES alone (69.5%). Moreover, utilisation of all Sentinel-2 red-edge spectral band combinations yielded the highest classification accuracy (overall accuracy of 83.6% with SSLES) compared to the inclusion of other band combinations. The results of this study indicate that the utilisation of an ES in the labelling process of SSL improves the reliability of the process and provides robust performance for the classification of vegetation cover." @default.
- W4288081346 created "2022-07-28" @default.
- W4288081346 creator A5029035818 @default.
- W4288081346 creator A5047127960 @default.
- W4288081346 creator A5070297374 @default.
- W4288081346 creator A5073807486 @default.
- W4288081346 creator A5047534573 @default.
- W4288081346 date "2022-07-27" @default.
- W4288081346 modified "2023-09-27" @default.
- W4288081346 title "Integrating Semi-Supervised Learning with an Expert System for Vegetation Cover Classification Using Sentinel-2 and RapidEye Data" @default.
- W4288081346 cites W1707683952 @default.
- W4288081346 cites W1967930305 @default.
- W4288081346 cites W1971495154 @default.
- W4288081346 cites W1985678877 @default.
- W4288081346 cites W1988714027 @default.
- W4288081346 cites W1990653740 @default.
- W4288081346 cites W1991129553 @default.
- W4288081346 cites W1998979050 @default.
- W4288081346 cites W1999410614 @default.
- W4288081346 cites W2004553299 @default.
- W4288081346 cites W2005156666 @default.
- W4288081346 cites W2009835454 @default.
- W4288081346 cites W2013369959 @default.
- W4288081346 cites W2030476695 @default.
- W4288081346 cites W2034650341 @default.
- W4288081346 cites W2041478093 @default.
- W4288081346 cites W2041970143 @default.
- W4288081346 cites W2044465660 @default.
- W4288081346 cites W2054022051 @default.
- W4288081346 cites W2054993156 @default.
- W4288081346 cites W2059446377 @default.
- W4288081346 cites W2063273970 @default.
- W4288081346 cites W2067191022 @default.
- W4288081346 cites W2072280025 @default.
- W4288081346 cites W2076786123 @default.
- W4288081346 cites W2083732757 @default.
- W4288081346 cites W2092745549 @default.
- W4288081346 cites W2101051003 @default.
- W4288081346 cites W2105757120 @default.
- W4288081346 cites W2120191719 @default.
- W4288081346 cites W2121031665 @default.
- W4288081346 cites W2141923507 @default.
- W4288081346 cites W2142012908 @default.
- W4288081346 cites W2153409933 @default.
- W4288081346 cites W2168867644 @default.
- W4288081346 cites W2182128045 @default.
- W4288081346 cites W2252304777 @default.
- W4288081346 cites W2273708466 @default.
- W4288081346 cites W2334034597 @default.
- W4288081346 cites W2526081939 @default.
- W4288081346 cites W2593491678 @default.
- W4288081346 cites W2899116890 @default.
- W4288081346 cites W2911964244 @default.
- W4288081346 cites W2921468651 @default.
- W4288081346 cites W2924772986 @default.
- W4288081346 cites W2982652103 @default.
- W4288081346 cites W3006066376 @default.
- W4288081346 cites W3021294679 @default.
- W4288081346 cites W3024891752 @default.
- W4288081346 cites W3196547638 @default.
- W4288081346 cites W4250994498 @default.
- W4288081346 doi "https://doi.org/10.3390/rs14153605" @default.
- W4288081346 hasPublicationYear "2022" @default.
- W4288081346 type Work @default.
- W4288081346 citedByCount "1" @default.
- W4288081346 countsByYear W42880813462023 @default.
- W4288081346 crossrefType "journal-article" @default.
- W4288081346 hasAuthorship W4288081346A5029035818 @default.
- W4288081346 hasAuthorship W4288081346A5047127960 @default.
- W4288081346 hasAuthorship W4288081346A5047534573 @default.
- W4288081346 hasAuthorship W4288081346A5070297374 @default.
- W4288081346 hasAuthorship W4288081346A5073807486 @default.
- W4288081346 hasBestOaLocation W42880813461 @default.
- W4288081346 hasConcept C114700698 @default.
- W4288081346 hasConcept C115961682 @default.
- W4288081346 hasConcept C127313418 @default.
- W4288081346 hasConcept C127413603 @default.
- W4288081346 hasConcept C147176958 @default.
- W4288081346 hasConcept C153180895 @default.
- W4288081346 hasConcept C154945302 @default.
- W4288081346 hasConcept C169258074 @default.
- W4288081346 hasConcept C2780648208 @default.
- W4288081346 hasConcept C41008148 @default.
- W4288081346 hasConcept C4792198 @default.
- W4288081346 hasConcept C62649853 @default.
- W4288081346 hasConcept C75294576 @default.
- W4288081346 hasConcept C95623464 @default.
- W4288081346 hasConceptScore W4288081346C114700698 @default.
- W4288081346 hasConceptScore W4288081346C115961682 @default.
- W4288081346 hasConceptScore W4288081346C127313418 @default.
- W4288081346 hasConceptScore W4288081346C127413603 @default.
- W4288081346 hasConceptScore W4288081346C147176958 @default.
- W4288081346 hasConceptScore W4288081346C153180895 @default.
- W4288081346 hasConceptScore W4288081346C154945302 @default.
- W4288081346 hasConceptScore W4288081346C169258074 @default.
- W4288081346 hasConceptScore W4288081346C2780648208 @default.
- W4288081346 hasConceptScore W4288081346C41008148 @default.
- W4288081346 hasConceptScore W4288081346C4792198 @default.