Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288086169> ?p ?o ?g. }
- W4288086169 endingPage "24" @default.
- W4288086169 startingPage "1" @default.
- W4288086169 abstract "The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One application domain is data science. New techniques in automating the creation of AI, known as AutoAI or AutoML, aim to automate the work practices of data scientists. AutoAI systems are capable of autonomously ingesting and pre-processing data, engineering new features, and creating and scoring models based on a target objectives (e.g. accuracy or run-time efficiency). Though not yet widely adopted, we are interested in understanding how AutoAI will impact the practice of data science. We conducted interviews with 20 data scientists who work at a large, multinational technology company and practice data science in various business settings. Our goal is to understand their current work practices and how these practices might change with AutoAI. Reactions were mixed: while informants expressed concerns about the trend of automating their jobs, they also strongly felt it was inevitable. Despite these concerns, they remained optimistic about their future job security due to a view that the future of data science work will be a collaboration between humans and AI systems, in which both automation and human expertise are indispensable." @default.
- W4288086169 created "2022-07-28" @default.
- W4288086169 creator A5004825279 @default.
- W4288086169 creator A5005255629 @default.
- W4288086169 creator A5009937890 @default.
- W4288086169 creator A5011883289 @default.
- W4288086169 creator A5026028381 @default.
- W4288086169 creator A5035277014 @default.
- W4288086169 creator A5062817658 @default.
- W4288086169 creator A5082995130 @default.
- W4288086169 creator A5089095944 @default.
- W4288086169 date "2019-11-07" @default.
- W4288086169 modified "2023-10-16" @default.
- W4288086169 title "Human-AI Collaboration in Data Science" @default.
- W4288086169 cites W1501005121 @default.
- W4288086169 cites W1980580900 @default.
- W4288086169 cites W2039570985 @default.
- W4288086169 cites W2047973478 @default.
- W4288086169 cites W2064766209 @default.
- W4288086169 cites W2075369726 @default.
- W4288086169 cites W2088356384 @default.
- W4288086169 cites W2108816886 @default.
- W4288086169 cites W2120096569 @default.
- W4288086169 cites W2131737623 @default.
- W4288086169 cites W2154729866 @default.
- W4288086169 cites W2166299892 @default.
- W4288086169 cites W2180345992 @default.
- W4288086169 cites W2182353144 @default.
- W4288086169 cites W2192203593 @default.
- W4288086169 cites W2282821441 @default.
- W4288086169 cites W2561688024 @default.
- W4288086169 cites W2584335703 @default.
- W4288086169 cites W2585287275 @default.
- W4288086169 cites W2593151843 @default.
- W4288086169 cites W2610281615 @default.
- W4288086169 cites W2611789916 @default.
- W4288086169 cites W2716311441 @default.
- W4288086169 cites W2740333758 @default.
- W4288086169 cites W2740486019 @default.
- W4288086169 cites W2771189628 @default.
- W4288086169 cites W2784241156 @default.
- W4288086169 cites W2796040126 @default.
- W4288086169 cites W2829183658 @default.
- W4288086169 cites W2886017866 @default.
- W4288086169 cites W2905618007 @default.
- W4288086169 cites W2911396267 @default.
- W4288086169 cites W2941766203 @default.
- W4288086169 cites W2945020547 @default.
- W4288086169 cites W2997591727 @default.
- W4288086169 cites W3101276022 @default.
- W4288086169 cites W3121961986 @default.
- W4288086169 cites W3123005344 @default.
- W4288086169 cites W3160903453 @default.
- W4288086169 cites W4242395378 @default.
- W4288086169 cites W4288083705 @default.
- W4288086169 doi "https://doi.org/10.1145/3359313" @default.
- W4288086169 hasPublicationYear "2019" @default.
- W4288086169 type Work @default.
- W4288086169 citedByCount "119" @default.
- W4288086169 countsByYear W42880861692020 @default.
- W4288086169 countsByYear W42880861692021 @default.
- W4288086169 countsByYear W42880861692022 @default.
- W4288086169 countsByYear W42880861692023 @default.
- W4288086169 crossrefType "journal-article" @default.
- W4288086169 hasAuthorship W4288086169A5004825279 @default.
- W4288086169 hasAuthorship W4288086169A5005255629 @default.
- W4288086169 hasAuthorship W4288086169A5009937890 @default.
- W4288086169 hasAuthorship W4288086169A5011883289 @default.
- W4288086169 hasAuthorship W4288086169A5026028381 @default.
- W4288086169 hasAuthorship W4288086169A5035277014 @default.
- W4288086169 hasAuthorship W4288086169A5062817658 @default.
- W4288086169 hasAuthorship W4288086169A5082995130 @default.
- W4288086169 hasAuthorship W4288086169A5089095944 @default.
- W4288086169 hasBestOaLocation W42880861692 @default.
- W4288086169 hasConcept C10138342 @default.
- W4288086169 hasConcept C115901376 @default.
- W4288086169 hasConcept C124101348 @default.
- W4288086169 hasConcept C127413603 @default.
- W4288086169 hasConcept C134306372 @default.
- W4288086169 hasConcept C144133560 @default.
- W4288086169 hasConcept C158016649 @default.
- W4288086169 hasConcept C18762648 @default.
- W4288086169 hasConcept C2522767166 @default.
- W4288086169 hasConcept C2780103759 @default.
- W4288086169 hasConcept C33923547 @default.
- W4288086169 hasConcept C36503486 @default.
- W4288086169 hasConcept C41008148 @default.
- W4288086169 hasConcept C55587333 @default.
- W4288086169 hasConcept C56739046 @default.
- W4288086169 hasConcept C75684735 @default.
- W4288086169 hasConcept C78519656 @default.
- W4288086169 hasConceptScore W4288086169C10138342 @default.
- W4288086169 hasConceptScore W4288086169C115901376 @default.
- W4288086169 hasConceptScore W4288086169C124101348 @default.
- W4288086169 hasConceptScore W4288086169C127413603 @default.
- W4288086169 hasConceptScore W4288086169C134306372 @default.
- W4288086169 hasConceptScore W4288086169C144133560 @default.
- W4288086169 hasConceptScore W4288086169C158016649 @default.