Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288092593> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4288092593 abstract "A function $fin mathcal{A}_1$ is said to be stable with respect to $gin mathcal{A}_1 $ if begin{align*} frac{s_n(f(z))}{f(z)} prec frac{1}{g(z)}, qquad zinmathbb{D}, end{align*} holds for all $n in mathbb{N}$ where $mathcal{A}_1$ denote the class of analytic functions $f$ in the unit disk $mathbb{D} ={zin mathbb{C}: |z|<1 }$ normalized by $f(0)=1$. Here $s_n(f(z))$, the $n^{th}$ partial sum of $f(z)=displaystylesum_{k=0}^{infty} a_kz^k$ is given by $s_n(f(z)) = displaystylesum_{k=0}^{n} a_kz^k, nin mathbb{N} cup {0}$. In this work, we consider the following function begin{align*} v_{lambda}(A,B,z)=left(frac{1+Az}{1+Bz}right)^{lambda} end{align*} for $-1leq B < A leq 1$ and $0leq lambda leq 1 $ for our investigation. The main purpose of this paper is to prove that $v_{lambda}(A,B,z)$ is stable with respect to $displaystyle v_{lambda}(0,B,z)= frac{1}{(1+Bz)^{lambda}}$ for $0 < lambda leq 1 $ and $-1leq B < A leq 0$. Further, we prove that $v_{lambda}(A,B,z)$ is not stable with respect to itself, when $0 < lambda leq 1 $ and $-1leq B < A <0$. end{abstract}" @default.
- W4288092593 created "2022-07-28" @default.
- W4288092593 creator A5044483658 @default.
- W4288092593 creator A5076715288 @default.
- W4288092593 creator A5088687937 @default.
- W4288092593 date "2019-10-14" @default.
- W4288092593 modified "2023-09-26" @default.
- W4288092593 title "Stable Functions of Janowski Type" @default.
- W4288092593 doi "https://doi.org/10.48550/arxiv.1910.06021" @default.
- W4288092593 hasPublicationYear "2019" @default.
- W4288092593 type Work @default.
- W4288092593 citedByCount "0" @default.
- W4288092593 crossrefType "posted-content" @default.
- W4288092593 hasAuthorship W4288092593A5044483658 @default.
- W4288092593 hasAuthorship W4288092593A5076715288 @default.
- W4288092593 hasAuthorship W4288092593A5088687937 @default.
- W4288092593 hasBestOaLocation W42880925931 @default.
- W4288092593 hasConcept C114614502 @default.
- W4288092593 hasConcept C121332964 @default.
- W4288092593 hasConcept C14036430 @default.
- W4288092593 hasConcept C18903297 @default.
- W4288092593 hasConcept C2777299769 @default.
- W4288092593 hasConcept C2778113609 @default.
- W4288092593 hasConcept C33923547 @default.
- W4288092593 hasConcept C62520636 @default.
- W4288092593 hasConcept C78458016 @default.
- W4288092593 hasConcept C86803240 @default.
- W4288092593 hasConceptScore W4288092593C114614502 @default.
- W4288092593 hasConceptScore W4288092593C121332964 @default.
- W4288092593 hasConceptScore W4288092593C14036430 @default.
- W4288092593 hasConceptScore W4288092593C18903297 @default.
- W4288092593 hasConceptScore W4288092593C2777299769 @default.
- W4288092593 hasConceptScore W4288092593C2778113609 @default.
- W4288092593 hasConceptScore W4288092593C33923547 @default.
- W4288092593 hasConceptScore W4288092593C62520636 @default.
- W4288092593 hasConceptScore W4288092593C78458016 @default.
- W4288092593 hasConceptScore W4288092593C86803240 @default.
- W4288092593 hasLocation W42880925931 @default.
- W4288092593 hasOpenAccess W4288092593 @default.
- W4288092593 hasPrimaryLocation W42880925931 @default.
- W4288092593 hasRelatedWork W1633662909 @default.
- W4288092593 hasRelatedWork W2058591591 @default.
- W4288092593 hasRelatedWork W2569575069 @default.
- W4288092593 hasRelatedWork W2597526809 @default.
- W4288092593 hasRelatedWork W2806984643 @default.
- W4288092593 hasRelatedWork W3099118046 @default.
- W4288092593 hasRelatedWork W3125364341 @default.
- W4288092593 hasRelatedWork W107107499 @default.
- W4288092593 hasRelatedWork W121402011 @default.
- W4288092593 hasRelatedWork W2467037348 @default.
- W4288092593 isParatext "false" @default.
- W4288092593 isRetracted "false" @default.
- W4288092593 workType "article" @default.