Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288096326> ?p ?o ?g. }
- W4288096326 abstract "The diagnostic process of attention deficit hyperactivity disorder (ADHD) is complex and relies on criteria sensitive to subjective biases. This may cause significant delays in appropriate treatment initiation. An automated analysis relying on subjective and objective measures might not only simplify the diagnostic process and reduce the time to diagnosis, but also improve reproducibility. While recent machine learning studies have succeeded at distinguishing ADHD from healthy controls, the clinical process requires differentiating among other or multiple psychiatric conditions. We trained a linear support vector machine (SVM) classifier to detect participants with ADHD in a population showing a broad spectrum of psychiatric conditions using anonymized data from clinical records (N = 299 participants). We differentiated children and adolescents with ADHD from those not having the condition with an accuracy of 66.1%. SVM using single features showed slight differences between features and overlapping standard deviations of the achieved accuracies. An automated feature selection achieved the best performance using a combination 19 features. Real-world clinical data from medical records can be used to automatically identify individuals with ADHD among help-seeking individuals using machine learning. The relevant diagnostic information can be reduced using an automated feature selection without loss of performance. A broad combination of symptoms across different domains, rather than specific domains, seems to indicate an ADHD diagnosis." @default.
- W4288096326 created "2022-07-28" @default.
- W4288096326 creator A5005656870 @default.
- W4288096326 creator A5052199719 @default.
- W4288096326 creator A5053927710 @default.
- W4288096326 creator A5062810955 @default.
- W4288096326 creator A5065376277 @default.
- W4288096326 creator A5073043826 @default.
- W4288096326 creator A5073884448 @default.
- W4288096326 date "2022-07-28" @default.
- W4288096326 modified "2023-09-26" @default.
- W4288096326 title "Training a machine learning classifier to identify ADHD based on real-world clinical data from medical records" @default.
- W4288096326 cites W1721214611 @default.
- W4288096326 cites W1852980180 @default.
- W4288096326 cites W1964104934 @default.
- W4288096326 cites W1983372637 @default.
- W4288096326 cites W1992715570 @default.
- W4288096326 cites W1995992667 @default.
- W4288096326 cites W2011725638 @default.
- W4288096326 cites W2047123426 @default.
- W4288096326 cites W2056423424 @default.
- W4288096326 cites W2093140699 @default.
- W4288096326 cites W2098063426 @default.
- W4288096326 cites W2112876062 @default.
- W4288096326 cites W2114627345 @default.
- W4288096326 cites W2135691106 @default.
- W4288096326 cites W2158485497 @default.
- W4288096326 cites W2167101736 @default.
- W4288096326 cites W2472069995 @default.
- W4288096326 cites W2489629154 @default.
- W4288096326 cites W2593674607 @default.
- W4288096326 cites W2600835436 @default.
- W4288096326 cites W2787427645 @default.
- W4288096326 cites W2805062029 @default.
- W4288096326 cites W2806581648 @default.
- W4288096326 cites W2808198584 @default.
- W4288096326 cites W2885967118 @default.
- W4288096326 cites W2889107381 @default.
- W4288096326 cites W2898673340 @default.
- W4288096326 cites W2912587246 @default.
- W4288096326 cites W3014106913 @default.
- W4288096326 cites W3024546126 @default.
- W4288096326 cites W3036515348 @default.
- W4288096326 cites W3083354005 @default.
- W4288096326 cites W3097714661 @default.
- W4288096326 cites W3104887532 @default.
- W4288096326 cites W3108636332 @default.
- W4288096326 cites W3134230886 @default.
- W4288096326 cites W3138438075 @default.
- W4288096326 cites W3196583986 @default.
- W4288096326 cites W4235059634 @default.
- W4288096326 doi "https://doi.org/10.1038/s41598-022-17126-x" @default.
- W4288096326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35902654" @default.
- W4288096326 hasPublicationYear "2022" @default.
- W4288096326 type Work @default.
- W4288096326 citedByCount "3" @default.
- W4288096326 countsByYear W42880963262022 @default.
- W4288096326 countsByYear W42880963262023 @default.
- W4288096326 crossrefType "journal-article" @default.
- W4288096326 hasAuthorship W4288096326A5005656870 @default.
- W4288096326 hasAuthorship W4288096326A5052199719 @default.
- W4288096326 hasAuthorship W4288096326A5053927710 @default.
- W4288096326 hasAuthorship W4288096326A5062810955 @default.
- W4288096326 hasAuthorship W4288096326A5065376277 @default.
- W4288096326 hasAuthorship W4288096326A5073043826 @default.
- W4288096326 hasAuthorship W4288096326A5073884448 @default.
- W4288096326 hasBestOaLocation W42880963261 @default.
- W4288096326 hasConcept C118552586 @default.
- W4288096326 hasConcept C119857082 @default.
- W4288096326 hasConcept C12267149 @default.
- W4288096326 hasConcept C126838900 @default.
- W4288096326 hasConcept C148483581 @default.
- W4288096326 hasConcept C154945302 @default.
- W4288096326 hasConcept C195910791 @default.
- W4288096326 hasConcept C2780783007 @default.
- W4288096326 hasConcept C2908647359 @default.
- W4288096326 hasConcept C41008148 @default.
- W4288096326 hasConcept C71924100 @default.
- W4288096326 hasConcept C95623464 @default.
- W4288096326 hasConcept C99454951 @default.
- W4288096326 hasConceptScore W4288096326C118552586 @default.
- W4288096326 hasConceptScore W4288096326C119857082 @default.
- W4288096326 hasConceptScore W4288096326C12267149 @default.
- W4288096326 hasConceptScore W4288096326C126838900 @default.
- W4288096326 hasConceptScore W4288096326C148483581 @default.
- W4288096326 hasConceptScore W4288096326C154945302 @default.
- W4288096326 hasConceptScore W4288096326C195910791 @default.
- W4288096326 hasConceptScore W4288096326C2780783007 @default.
- W4288096326 hasConceptScore W4288096326C2908647359 @default.
- W4288096326 hasConceptScore W4288096326C41008148 @default.
- W4288096326 hasConceptScore W4288096326C71924100 @default.
- W4288096326 hasConceptScore W4288096326C95623464 @default.
- W4288096326 hasConceptScore W4288096326C99454951 @default.
- W4288096326 hasFunder F4320321613 @default.
- W4288096326 hasIssue "1" @default.
- W4288096326 hasLocation W42880963261 @default.
- W4288096326 hasLocation W42880963262 @default.
- W4288096326 hasLocation W42880963263 @default.
- W4288096326 hasLocation W42880963264 @default.
- W4288096326 hasOpenAccess W4288096326 @default.