Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288099717> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4288099717 abstract "Deep learning can accurately represent sub-grid-scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we use Variational Encoder Decoder structures (VED), a non-linear dimensionality reduction technique, to learn and understand convective processes in an aquaplanet superparameterized climate model simulation, where deep convective processes are simulated explicitly. We show that similar to previous deep learning studies based on feed-forward neural nets, the VED is capable of learning and accurately reproducing convective processes. In contrast to past work, we show this can be achieved by compressing the original information into only five latent nodes. As a result, the VED can be used to understand convective processes and delineate modes of convection through the exploration of its latent dimensions. A close investigation of the latent space enables the identification of different convective regimes: a) stable conditions are clearly distinguished from deep convection with low outgoing longwave radiation and strong precipitation; b) high optically thin cirrus-like clouds are separated from low optically thick cumulus clouds; and c) shallow convective processes are associated with large-scale moisture content and surface diabatic heating. Our results demonstrate that VEDs can accurately represent convective processes in climate models, while enabling interpretability and better understanding of sub-grid-scale physical processes, paving the way to increasingly interpretable machine learning parameterizations with promising generative properties" @default.
- W4288099717 created "2022-07-28" @default.
- W4288099717 creator A5000080873 @default.
- W4288099717 creator A5004092533 @default.
- W4288099717 creator A5034118743 @default.
- W4288099717 creator A5045746109 @default.
- W4288099717 creator A5061588829 @default.
- W4288099717 creator A5070191844 @default.
- W4288099717 date "2022-04-19" @default.
- W4288099717 modified "2023-09-23" @default.
- W4288099717 title "Non-Linear Dimensionality Reduction with a Variational Encoder Decoder to Understand Convective Processes in Climate Models" @default.
- W4288099717 doi "https://doi.org/10.48550/arxiv.2204.08708" @default.
- W4288099717 hasPublicationYear "2022" @default.
- W4288099717 type Work @default.
- W4288099717 citedByCount "0" @default.
- W4288099717 crossrefType "posted-content" @default.
- W4288099717 hasAuthorship W4288099717A5000080873 @default.
- W4288099717 hasAuthorship W4288099717A5004092533 @default.
- W4288099717 hasAuthorship W4288099717A5034118743 @default.
- W4288099717 hasAuthorship W4288099717A5045746109 @default.
- W4288099717 hasAuthorship W4288099717A5061588829 @default.
- W4288099717 hasAuthorship W4288099717A5070191844 @default.
- W4288099717 hasBestOaLocation W42880997171 @default.
- W4288099717 hasConcept C101738243 @default.
- W4288099717 hasConcept C108583219 @default.
- W4288099717 hasConcept C10899652 @default.
- W4288099717 hasConcept C111030470 @default.
- W4288099717 hasConcept C121332964 @default.
- W4288099717 hasConcept C153294291 @default.
- W4288099717 hasConcept C154945302 @default.
- W4288099717 hasConcept C2781067378 @default.
- W4288099717 hasConcept C41008148 @default.
- W4288099717 hasConcept C70518039 @default.
- W4288099717 hasConceptScore W4288099717C101738243 @default.
- W4288099717 hasConceptScore W4288099717C108583219 @default.
- W4288099717 hasConceptScore W4288099717C10899652 @default.
- W4288099717 hasConceptScore W4288099717C111030470 @default.
- W4288099717 hasConceptScore W4288099717C121332964 @default.
- W4288099717 hasConceptScore W4288099717C153294291 @default.
- W4288099717 hasConceptScore W4288099717C154945302 @default.
- W4288099717 hasConceptScore W4288099717C2781067378 @default.
- W4288099717 hasConceptScore W4288099717C41008148 @default.
- W4288099717 hasConceptScore W4288099717C70518039 @default.
- W4288099717 hasLocation W42880997171 @default.
- W4288099717 hasOpenAccess W4288099717 @default.
- W4288099717 hasPrimaryLocation W42880997171 @default.
- W4288099717 hasRelatedWork W11553578 @default.
- W4288099717 hasRelatedWork W11652828 @default.
- W4288099717 hasRelatedWork W12723491 @default.
- W4288099717 hasRelatedWork W1738682 @default.
- W4288099717 hasRelatedWork W2076915 @default.
- W4288099717 hasRelatedWork W3491078 @default.
- W4288099717 hasRelatedWork W4085024 @default.
- W4288099717 hasRelatedWork W4229286 @default.
- W4288099717 hasRelatedWork W6057950 @default.
- W4288099717 hasRelatedWork W8718456 @default.
- W4288099717 isParatext "false" @default.
- W4288099717 isRetracted "false" @default.
- W4288099717 workType "article" @default.