Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288102582> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4288102582 abstract "Let $G=(V,E)$ be a graph with the vertex-set $V$ and the edge-set $E$. Let $N(v)$ denote the set of neighbors of the vertex $v$ of $G.$ The graph $G$ is called $ irreducible $ whenever for every $v,w in V$ if $v neq w$, then $N(v)neq N(w).$ In this paper, we present a method for finding automorphism groups of connected bipartite irreducible graphs. Then, by our method, we determine automorphism groups of some classes of connected bipartite irreducible graphs, including a class of graphs which are derived from Grassmann graphs. Let $a_0$ be a fixed positive integer. We show that if $G$ is a connected non-bipartite irreducible graph such that $c(v,w)=|N(v)cap N(w)|=a_0$ when $v,w$ are adjacent, whereas $c(v,w) neq a_0$, when $v,w$ are not adjacent, then $G$ is a $stable$ graph, that is, the automorphism group of the bipartite double cover of $G$ is isomorphic with the group $Aut(G) times mathbb{Z}_2$. Finally, we show that the Johnson graph $J(n,k)$ is a stable graph." @default.
- W4288102582 created "2022-07-28" @default.
- W4288102582 creator A5030253418 @default.
- W4288102582 date "2019-09-25" @default.
- W4288102582 modified "2023-09-26" @default.
- W4288102582 title "On the automorphism groups of connected bipartite irreducible graphs" @default.
- W4288102582 doi "https://doi.org/10.48550/arxiv.1909.11454" @default.
- W4288102582 hasPublicationYear "2019" @default.
- W4288102582 type Work @default.
- W4288102582 citedByCount "0" @default.
- W4288102582 crossrefType "posted-content" @default.
- W4288102582 hasAuthorship W4288102582A5030253418 @default.
- W4288102582 hasBestOaLocation W42881025821 @default.
- W4288102582 hasConcept C113203676 @default.
- W4288102582 hasConcept C114614502 @default.
- W4288102582 hasConcept C118615104 @default.
- W4288102582 hasConcept C118712358 @default.
- W4288102582 hasConcept C132525143 @default.
- W4288102582 hasConcept C134119311 @default.
- W4288102582 hasConcept C197657726 @default.
- W4288102582 hasConcept C200597783 @default.
- W4288102582 hasConcept C203776342 @default.
- W4288102582 hasConcept C22149727 @default.
- W4288102582 hasConcept C2988750069 @default.
- W4288102582 hasConcept C33923547 @default.
- W4288102582 hasConcept C6049932 @default.
- W4288102582 hasConcept C80899671 @default.
- W4288102582 hasConceptScore W4288102582C113203676 @default.
- W4288102582 hasConceptScore W4288102582C114614502 @default.
- W4288102582 hasConceptScore W4288102582C118615104 @default.
- W4288102582 hasConceptScore W4288102582C118712358 @default.
- W4288102582 hasConceptScore W4288102582C132525143 @default.
- W4288102582 hasConceptScore W4288102582C134119311 @default.
- W4288102582 hasConceptScore W4288102582C197657726 @default.
- W4288102582 hasConceptScore W4288102582C200597783 @default.
- W4288102582 hasConceptScore W4288102582C203776342 @default.
- W4288102582 hasConceptScore W4288102582C22149727 @default.
- W4288102582 hasConceptScore W4288102582C2988750069 @default.
- W4288102582 hasConceptScore W4288102582C33923547 @default.
- W4288102582 hasConceptScore W4288102582C6049932 @default.
- W4288102582 hasConceptScore W4288102582C80899671 @default.
- W4288102582 hasLocation W42881025821 @default.
- W4288102582 hasOpenAccess W4288102582 @default.
- W4288102582 hasPrimaryLocation W42881025821 @default.
- W4288102582 hasRelatedWork W2022808896 @default.
- W4288102582 hasRelatedWork W2045919248 @default.
- W4288102582 hasRelatedWork W2366809764 @default.
- W4288102582 hasRelatedWork W2793322743 @default.
- W4288102582 hasRelatedWork W2936874020 @default.
- W4288102582 hasRelatedWork W2965400936 @default.
- W4288102582 hasRelatedWork W2976412003 @default.
- W4288102582 hasRelatedWork W3088032306 @default.
- W4288102582 hasRelatedWork W3088591584 @default.
- W4288102582 hasRelatedWork W4288102582 @default.
- W4288102582 isParatext "false" @default.
- W4288102582 isRetracted "false" @default.
- W4288102582 workType "article" @default.