Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288264792> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4288264792 abstract "There is a natural conjugation action on the set of endomorphism of $P^N$ of fixed degree $d geq 2$. The quotient by this action forms the moduli of degree $d$ endomorphisms of $P^N$, denoted $mathcal{M}_d^N$. We construct invariant functions on this moduli space coming from to set of multiplier matrices of the periodic points. The basic properties of these functions are demonstrated such as that they are in the ring of regular functions of $mathcal{M}_d^N$, methods of computing them, as well as the existence of relations. The main part of the article examines to what extend these invariant functions determine the conjugacy class in the moduli space. Several different types of isospectral families are constructed and a generalization of McMullen's theorem on the multiplier mapping of dimension 1 is proposed. Finally, this generalization is shown to hold when restricted to several specific families in $mathcal{M}_d^N$." @default.
- W4288264792 created "2022-07-28" @default.
- W4288264792 creator A5003220793 @default.
- W4288264792 date "2019-08-08" @default.
- W4288264792 modified "2023-09-29" @default.
- W4288264792 title "Multipliers and invariants of endomorphisms of projective space in dimension greater than 1" @default.
- W4288264792 doi "https://doi.org/10.48550/arxiv.1908.03184" @default.
- W4288264792 hasPublicationYear "2019" @default.
- W4288264792 type Work @default.
- W4288264792 citedByCount "0" @default.
- W4288264792 crossrefType "posted-content" @default.
- W4288264792 hasAuthorship W4288264792A5003220793 @default.
- W4288264792 hasBestOaLocation W42882647921 @default.
- W4288264792 hasConcept C116858840 @default.
- W4288264792 hasConcept C118615104 @default.
- W4288264792 hasConcept C124584101 @default.
- W4288264792 hasConcept C139719470 @default.
- W4288264792 hasConcept C162324750 @default.
- W4288264792 hasConcept C190470478 @default.
- W4288264792 hasConcept C199422724 @default.
- W4288264792 hasConcept C202444582 @default.
- W4288264792 hasConcept C33676613 @default.
- W4288264792 hasConcept C33923547 @default.
- W4288264792 hasConcept C37914503 @default.
- W4288264792 hasConcept C73373263 @default.
- W4288264792 hasConcept C87945829 @default.
- W4288264792 hasConceptScore W4288264792C116858840 @default.
- W4288264792 hasConceptScore W4288264792C118615104 @default.
- W4288264792 hasConceptScore W4288264792C124584101 @default.
- W4288264792 hasConceptScore W4288264792C139719470 @default.
- W4288264792 hasConceptScore W4288264792C162324750 @default.
- W4288264792 hasConceptScore W4288264792C190470478 @default.
- W4288264792 hasConceptScore W4288264792C199422724 @default.
- W4288264792 hasConceptScore W4288264792C202444582 @default.
- W4288264792 hasConceptScore W4288264792C33676613 @default.
- W4288264792 hasConceptScore W4288264792C33923547 @default.
- W4288264792 hasConceptScore W4288264792C37914503 @default.
- W4288264792 hasConceptScore W4288264792C73373263 @default.
- W4288264792 hasConceptScore W4288264792C87945829 @default.
- W4288264792 hasLocation W42882647921 @default.
- W4288264792 hasLocation W42882647922 @default.
- W4288264792 hasOpenAccess W4288264792 @default.
- W4288264792 hasPrimaryLocation W42882647921 @default.
- W4288264792 hasRelatedWork W1506668851 @default.
- W4288264792 hasRelatedWork W1569032669 @default.
- W4288264792 hasRelatedWork W2117006694 @default.
- W4288264792 hasRelatedWork W2120384785 @default.
- W4288264792 hasRelatedWork W2254789856 @default.
- W4288264792 hasRelatedWork W2333981790 @default.
- W4288264792 hasRelatedWork W3037974969 @default.
- W4288264792 hasRelatedWork W3081258105 @default.
- W4288264792 hasRelatedWork W3099631445 @default.
- W4288264792 hasRelatedWork W4292639840 @default.
- W4288264792 isParatext "false" @default.
- W4288264792 isRetracted "false" @default.
- W4288264792 workType "article" @default.