Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288273642> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4288273642 abstract "Bayesian Optimization (BO) is a framework for black-box optimization that is especially suitable for expensive cost functions. Among the main parts of a BO algorithm, the acquisition function is of fundamental importance, since it guides the optimization algorithm by translating the uncertainty of the regression model in a utility measure for each point to be evaluated. Considering such aspect, selection and design of acquisition functions are one of the most popular research topics in BO. Since no single acquisition function was proved to have better performance in all tasks, a well-established approach consists of selecting different acquisition functions along the iterations of a BO execution. In such an approach, the GP-Hedge algorithm is a widely used option given its simplicity and good performance. Despite its success in various applications, GP-Hedge shows an undesirable characteristic of accounting on all past performance measures of each acquisition function to select the next function to be used. In this case, good or bad values obtained in an initial iteration may impact the choice of the acquisition function for the rest of the algorithm. This fact may induce a dominant behavior of an acquisition function and impact the final performance of the method. Aiming to overcome such limitation, in this work we propose a variant of GP-Hedge, named No-PASt-BO, that reduce the influence of far past evaluations. Moreover, our method presents a built-in normalization that avoids the functions in the portfolio to have similar probabilities, thus improving the exploration. The obtained results on both synthetic and real-world optimization tasks indicate that No-PASt-BO presents competitive performance and always outperforms GP-Hedge." @default.
- W4288273642 created "2022-07-28" @default.
- W4288273642 creator A5009178588 @default.
- W4288273642 creator A5043034260 @default.
- W4288273642 creator A5060534675 @default.
- W4288273642 creator A5088408928 @default.
- W4288273642 date "2019-08-01" @default.
- W4288273642 modified "2023-09-27" @default.
- W4288273642 title "No-PASt-BO: Normalized Portfolio Allocation Strategy for Bayesian Optimization" @default.
- W4288273642 doi "https://doi.org/10.48550/arxiv.1908.00361" @default.
- W4288273642 hasPublicationYear "2019" @default.
- W4288273642 type Work @default.
- W4288273642 citedByCount "0" @default.
- W4288273642 crossrefType "posted-content" @default.
- W4288273642 hasAuthorship W4288273642A5009178588 @default.
- W4288273642 hasAuthorship W4288273642A5043034260 @default.
- W4288273642 hasAuthorship W4288273642A5060534675 @default.
- W4288273642 hasAuthorship W4288273642A5088408928 @default.
- W4288273642 hasBestOaLocation W42882736421 @default.
- W4288273642 hasConcept C10138342 @default.
- W4288273642 hasConcept C107673813 @default.
- W4288273642 hasConcept C11413529 @default.
- W4288273642 hasConcept C119857082 @default.
- W4288273642 hasConcept C126255220 @default.
- W4288273642 hasConcept C136886441 @default.
- W4288273642 hasConcept C14036430 @default.
- W4288273642 hasConcept C144024400 @default.
- W4288273642 hasConcept C154945302 @default.
- W4288273642 hasConcept C162324750 @default.
- W4288273642 hasConcept C18903297 @default.
- W4288273642 hasConcept C19165224 @default.
- W4288273642 hasConcept C2778049539 @default.
- W4288273642 hasConcept C2780821815 @default.
- W4288273642 hasConcept C33923547 @default.
- W4288273642 hasConcept C41008148 @default.
- W4288273642 hasConcept C70771513 @default.
- W4288273642 hasConcept C78458016 @default.
- W4288273642 hasConcept C81917197 @default.
- W4288273642 hasConcept C86803240 @default.
- W4288273642 hasConceptScore W4288273642C10138342 @default.
- W4288273642 hasConceptScore W4288273642C107673813 @default.
- W4288273642 hasConceptScore W4288273642C11413529 @default.
- W4288273642 hasConceptScore W4288273642C119857082 @default.
- W4288273642 hasConceptScore W4288273642C126255220 @default.
- W4288273642 hasConceptScore W4288273642C136886441 @default.
- W4288273642 hasConceptScore W4288273642C14036430 @default.
- W4288273642 hasConceptScore W4288273642C144024400 @default.
- W4288273642 hasConceptScore W4288273642C154945302 @default.
- W4288273642 hasConceptScore W4288273642C162324750 @default.
- W4288273642 hasConceptScore W4288273642C18903297 @default.
- W4288273642 hasConceptScore W4288273642C19165224 @default.
- W4288273642 hasConceptScore W4288273642C2778049539 @default.
- W4288273642 hasConceptScore W4288273642C2780821815 @default.
- W4288273642 hasConceptScore W4288273642C33923547 @default.
- W4288273642 hasConceptScore W4288273642C41008148 @default.
- W4288273642 hasConceptScore W4288273642C70771513 @default.
- W4288273642 hasConceptScore W4288273642C78458016 @default.
- W4288273642 hasConceptScore W4288273642C81917197 @default.
- W4288273642 hasConceptScore W4288273642C86803240 @default.
- W4288273642 hasLocation W42882736421 @default.
- W4288273642 hasOpenAccess W4288273642 @default.
- W4288273642 hasPrimaryLocation W42882736421 @default.
- W4288273642 hasRelatedWork W16685711 @default.
- W4288273642 hasRelatedWork W2029280765 @default.
- W4288273642 hasRelatedWork W2077533982 @default.
- W4288273642 hasRelatedWork W2092162738 @default.
- W4288273642 hasRelatedWork W2111839317 @default.
- W4288273642 hasRelatedWork W2164834949 @default.
- W4288273642 hasRelatedWork W2354229976 @default.
- W4288273642 hasRelatedWork W2384191988 @default.
- W4288273642 hasRelatedWork W2468371002 @default.
- W4288273642 hasRelatedWork W3112808520 @default.
- W4288273642 isParatext "false" @default.
- W4288273642 isRetracted "false" @default.
- W4288273642 workType "article" @default.