Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288279334> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4288279334 abstract "This chapter deals with kernel methods as a special class of techniques for surrogate modeling. Kernel methods have proven to be efficient in machine learning, pattern recognition and signal analysis due to their flexibility, excellent experimental performance and elegant functional analytic background. These data-based techniques provide so called kernel expansions, i.e., linear combinations of kernel functions which are generated from given input-output point samples that may be arbitrarily scattered. In particular, these techniques are meshless, do not require or depend on a grid, hence are less prone to the curse of dimensionality, even for high-dimensional problems. In contrast to projection-based model reduction, we do not necessarily assume a high-dimensional model, but a general function that models input-output behavior within some simulation context. This could be some micro-model in a multiscale-simulation, some submodel in a coupled system, some initialization function for solvers, coefficient function in PDEs, etc. First, kernel surrogates can be useful if the input-output function is expensive to evaluate, e.g. is a result of a finite element simulation. Here, acceleration can be obtained by sparse kernel expansions. Second, if a function is available only via measurements or a few function evaluation samples, kernel approximation techniques can provide function surrogates that allow global evaluation. We present some important kernel approximation techniques, which are kernel interpolation, greedy kernel approximation and support vector regression. Pseudo-code is provided for ease of reproducibility. In order to illustrate the main features, commonalities and differences, we compare these techniques on a real-world application. The experiments clearly indicate the enormous acceleration potential" @default.
- W4288279334 created "2022-07-28" @default.
- W4288279334 creator A5073837806 @default.
- W4288279334 creator A5087671511 @default.
- W4288279334 date "2019-07-24" @default.
- W4288279334 modified "2023-09-23" @default.
- W4288279334 title "Kernel Methods for Surrogate Modeling" @default.
- W4288279334 doi "https://doi.org/10.48550/arxiv.1907.10556" @default.
- W4288279334 hasPublicationYear "2019" @default.
- W4288279334 type Work @default.
- W4288279334 citedByCount "0" @default.
- W4288279334 crossrefType "posted-content" @default.
- W4288279334 hasAuthorship W4288279334A5073837806 @default.
- W4288279334 hasAuthorship W4288279334A5087671511 @default.
- W4288279334 hasBestOaLocation W42882793341 @default.
- W4288279334 hasConcept C11413529 @default.
- W4288279334 hasConcept C114614502 @default.
- W4288279334 hasConcept C122280245 @default.
- W4288279334 hasConcept C12267149 @default.
- W4288279334 hasConcept C126255220 @default.
- W4288279334 hasConcept C134517425 @default.
- W4288279334 hasConcept C154945302 @default.
- W4288279334 hasConcept C160446489 @default.
- W4288279334 hasConcept C182335926 @default.
- W4288279334 hasConcept C195699287 @default.
- W4288279334 hasConcept C28826006 @default.
- W4288279334 hasConcept C33923547 @default.
- W4288279334 hasConcept C41008148 @default.
- W4288279334 hasConcept C74193536 @default.
- W4288279334 hasConcept C75866337 @default.
- W4288279334 hasConceptScore W4288279334C11413529 @default.
- W4288279334 hasConceptScore W4288279334C114614502 @default.
- W4288279334 hasConceptScore W4288279334C122280245 @default.
- W4288279334 hasConceptScore W4288279334C12267149 @default.
- W4288279334 hasConceptScore W4288279334C126255220 @default.
- W4288279334 hasConceptScore W4288279334C134517425 @default.
- W4288279334 hasConceptScore W4288279334C154945302 @default.
- W4288279334 hasConceptScore W4288279334C160446489 @default.
- W4288279334 hasConceptScore W4288279334C182335926 @default.
- W4288279334 hasConceptScore W4288279334C195699287 @default.
- W4288279334 hasConceptScore W4288279334C28826006 @default.
- W4288279334 hasConceptScore W4288279334C33923547 @default.
- W4288279334 hasConceptScore W4288279334C41008148 @default.
- W4288279334 hasConceptScore W4288279334C74193536 @default.
- W4288279334 hasConceptScore W4288279334C75866337 @default.
- W4288279334 hasLocation W42882793341 @default.
- W4288279334 hasOpenAccess W4288279334 @default.
- W4288279334 hasPrimaryLocation W42882793341 @default.
- W4288279334 hasRelatedWork W1491928452 @default.
- W4288279334 hasRelatedWork W1984421104 @default.
- W4288279334 hasRelatedWork W2071590642 @default.
- W4288279334 hasRelatedWork W2127229869 @default.
- W4288279334 hasRelatedWork W2366185040 @default.
- W4288279334 hasRelatedWork W2384322977 @default.
- W4288279334 hasRelatedWork W2393746448 @default.
- W4288279334 hasRelatedWork W2512565647 @default.
- W4288279334 hasRelatedWork W2535206775 @default.
- W4288279334 hasRelatedWork W3123056048 @default.
- W4288279334 isParatext "false" @default.
- W4288279334 isRetracted "false" @default.
- W4288279334 workType "article" @default.