Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288283417> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4288283417 abstract "Quantum Neural Networks (QNNs) are a promising variational learning paradigm with applications to near-term quantum processors, however they still face some significant challenges. One such challenge is finding good parameter initialization heuristics that ensure rapid and consistent convergence to local minima of the parameterized quantum circuit landscape. In this work, we train classical neural networks to assist in the quantum learning process, also know as meta-learning, to rapidly find approximate optima in the parameter landscape for several classes of quantum variational algorithms. Specifically, we train classical recurrent neural networks to find approximately optimal parameters within a small number of queries of the cost function for the Quantum Approximate Optimization Algorithm (QAOA) for MaxCut, QAOA for Sherrington-Kirkpatrick Ising model, and for a Variational Quantum Eigensolver for the Hubbard model. By initializing other optimizers at parameter values suggested by the classical neural network, we demonstrate a significant improvement in the total number of optimization iterations required to reach a given accuracy. We further demonstrate that the optimization strategies learned by the neural network generalize well across a range of problem instance sizes. This opens up the possibility of training on small, classically simulatable problem instances, in order to initialize larger, classically intractably simulatable problem instances on quantum devices, thereby significantly reducing the number of required quantum-classical optimization iterations." @default.
- W4288283417 created "2022-07-28" @default.
- W4288283417 creator A5012231169 @default.
- W4288283417 creator A5014321658 @default.
- W4288283417 creator A5023528725 @default.
- W4288283417 creator A5055306123 @default.
- W4288283417 creator A5059699271 @default.
- W4288283417 creator A5065286115 @default.
- W4288283417 creator A5088652222 @default.
- W4288283417 creator A5090719705 @default.
- W4288283417 date "2019-07-11" @default.
- W4288283417 modified "2023-10-02" @default.
- W4288283417 title "Learning to learn with quantum neural networks via classical neural networks" @default.
- W4288283417 doi "https://doi.org/10.48550/arxiv.1907.05415" @default.
- W4288283417 hasPublicationYear "2019" @default.
- W4288283417 type Work @default.
- W4288283417 citedByCount "3" @default.
- W4288283417 countsByYear W42882834172022 @default.
- W4288283417 countsByYear W42882834172023 @default.
- W4288283417 crossrefType "posted-content" @default.
- W4288283417 hasAuthorship W4288283417A5012231169 @default.
- W4288283417 hasAuthorship W4288283417A5014321658 @default.
- W4288283417 hasAuthorship W4288283417A5023528725 @default.
- W4288283417 hasAuthorship W4288283417A5055306123 @default.
- W4288283417 hasAuthorship W4288283417A5059699271 @default.
- W4288283417 hasAuthorship W4288283417A5065286115 @default.
- W4288283417 hasAuthorship W4288283417A5088652222 @default.
- W4288283417 hasAuthorship W4288283417A5090719705 @default.
- W4288283417 hasBestOaLocation W42882834171 @default.
- W4288283417 hasConcept C114466953 @default.
- W4288283417 hasConcept C121332964 @default.
- W4288283417 hasConcept C126255220 @default.
- W4288283417 hasConcept C127705205 @default.
- W4288283417 hasConcept C134306372 @default.
- W4288283417 hasConcept C154945302 @default.
- W4288283417 hasConcept C186633575 @default.
- W4288283417 hasConcept C199360897 @default.
- W4288283417 hasConcept C2779094486 @default.
- W4288283417 hasConcept C33923547 @default.
- W4288283417 hasConcept C41008148 @default.
- W4288283417 hasConcept C50644808 @default.
- W4288283417 hasConcept C58053490 @default.
- W4288283417 hasConcept C62520636 @default.
- W4288283417 hasConcept C84114770 @default.
- W4288283417 hasConceptScore W4288283417C114466953 @default.
- W4288283417 hasConceptScore W4288283417C121332964 @default.
- W4288283417 hasConceptScore W4288283417C126255220 @default.
- W4288283417 hasConceptScore W4288283417C127705205 @default.
- W4288283417 hasConceptScore W4288283417C134306372 @default.
- W4288283417 hasConceptScore W4288283417C154945302 @default.
- W4288283417 hasConceptScore W4288283417C186633575 @default.
- W4288283417 hasConceptScore W4288283417C199360897 @default.
- W4288283417 hasConceptScore W4288283417C2779094486 @default.
- W4288283417 hasConceptScore W4288283417C33923547 @default.
- W4288283417 hasConceptScore W4288283417C41008148 @default.
- W4288283417 hasConceptScore W4288283417C50644808 @default.
- W4288283417 hasConceptScore W4288283417C58053490 @default.
- W4288283417 hasConceptScore W4288283417C62520636 @default.
- W4288283417 hasConceptScore W4288283417C84114770 @default.
- W4288283417 hasLocation W42882834171 @default.
- W4288283417 hasOpenAccess W4288283417 @default.
- W4288283417 hasPrimaryLocation W42882834171 @default.
- W4288283417 hasRelatedWork W1531741152 @default.
- W4288283417 hasRelatedWork W1865941629 @default.
- W4288283417 hasRelatedWork W1881505102 @default.
- W4288283417 hasRelatedWork W2116390979 @default.
- W4288283417 hasRelatedWork W2382450205 @default.
- W4288283417 hasRelatedWork W2391528477 @default.
- W4288283417 hasRelatedWork W2958921151 @default.
- W4288283417 hasRelatedWork W32751321 @default.
- W4288283417 hasRelatedWork W4221163739 @default.
- W4288283417 hasRelatedWork W4321012214 @default.
- W4288283417 isParatext "false" @default.
- W4288283417 isRetracted "false" @default.
- W4288283417 workType "article" @default.