Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288288992> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4288288992 abstract "We develop further quaternionic analysis introducing left and right doubly regular functions. We derive Cauchy-Fueter type formulas for these doubly regular functions that can be regarded as another counterpart of Cauchy's integral formula for the second order pole, in addition to the one studied in the first paper with the same title. We also realize the doubly regular functions as a subspace of the quaternionic-valued functions satisfying a Euclidean version of Maxwell's equations for the electromagnetic field. Then we return to the study of the original quaternionic analogue of Cauchy's second order pole formula and its relation to the polarization of vacuum. We find the decomposition of the space of quaternionic-valued functions into irreducible components that include the spaces of doubly left and right regular functions. Using this decomposition, we show that a regularization of the vacuum polarization diagram is achieved by subtracting the component corresponding to the one-dimensional subrepresentation of the conformal group. After the regularization, the vacuum polarization diagram is identified with a certain second order differential operator which yields a quaternionic version of Maxwell equations. Next, we introduce two types of quaternionic algebras consisting of spaces of scalar-valued and quaternionic-valued functions. We emphasize that these algebra structures are invariant under the action of the conformal Lie algebra. This uses techniques from our study of the vacuum polarization diagram. These algebras are not associative, but we can define an infinite family of n-multiplications, and we conjecture that they have structures of weak cyclic A-infinity algebras. We also conjecture the relation between the multiplication operations of the scalar and non-scalar quaternionic algebras with the n-photon Feynman diagrams in the scalar and ordinary conformal QED." @default.
- W4288288992 created "2022-07-28" @default.
- W4288288992 creator A5010913272 @default.
- W4288288992 creator A5059521408 @default.
- W4288288992 date "2019-07-02" @default.
- W4288288992 modified "2023-09-27" @default.
- W4288288992 title "Quaternionic Analysis, Representation Theory and Physics II" @default.
- W4288288992 doi "https://doi.org/10.48550/arxiv.1907.01594" @default.
- W4288288992 hasPublicationYear "2019" @default.
- W4288288992 type Work @default.
- W4288288992 citedByCount "0" @default.
- W4288288992 crossrefType "posted-content" @default.
- W4288288992 hasAuthorship W4288288992A5010913272 @default.
- W4288288992 hasAuthorship W4288288992A5059521408 @default.
- W4288288992 hasBestOaLocation W42882889921 @default.
- W4288288992 hasConcept C134306372 @default.
- W4288288992 hasConcept C136119220 @default.
- W4288288992 hasConcept C142292226 @default.
- W4288288992 hasConcept C190470478 @default.
- W4288288992 hasConcept C202444582 @default.
- W4288288992 hasConcept C25398135 @default.
- W4288288992 hasConcept C2779672364 @default.
- W4288288992 hasConcept C33923547 @default.
- W4288288992 hasConcept C37914503 @default.
- W4288288992 hasConcept C54613284 @default.
- W4288288992 hasConcept C94618114 @default.
- W4288288992 hasConcept C98214594 @default.
- W4288288992 hasConceptScore W4288288992C134306372 @default.
- W4288288992 hasConceptScore W4288288992C136119220 @default.
- W4288288992 hasConceptScore W4288288992C142292226 @default.
- W4288288992 hasConceptScore W4288288992C190470478 @default.
- W4288288992 hasConceptScore W4288288992C202444582 @default.
- W4288288992 hasConceptScore W4288288992C25398135 @default.
- W4288288992 hasConceptScore W4288288992C2779672364 @default.
- W4288288992 hasConceptScore W4288288992C33923547 @default.
- W4288288992 hasConceptScore W4288288992C37914503 @default.
- W4288288992 hasConceptScore W4288288992C54613284 @default.
- W4288288992 hasConceptScore W4288288992C94618114 @default.
- W4288288992 hasConceptScore W4288288992C98214594 @default.
- W4288288992 hasLocation W42882889921 @default.
- W4288288992 hasOpenAccess W4288288992 @default.
- W4288288992 hasPrimaryLocation W42882889921 @default.
- W4288288992 hasRelatedWork W1966947787 @default.
- W4288288992 hasRelatedWork W1974607307 @default.
- W4288288992 hasRelatedWork W1981909949 @default.
- W4288288992 hasRelatedWork W2076912093 @default.
- W4288288992 hasRelatedWork W2088544526 @default.
- W4288288992 hasRelatedWork W2327475189 @default.
- W4288288992 hasRelatedWork W2601471357 @default.
- W4288288992 hasRelatedWork W2901496727 @default.
- W4288288992 hasRelatedWork W2951338287 @default.
- W4288288992 hasRelatedWork W2963632507 @default.
- W4288288992 isParatext "false" @default.
- W4288288992 isRetracted "false" @default.
- W4288288992 workType "article" @default.