Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288289328> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4288289328 abstract "Industrial control systems (ICSs) are widely used and vital to industry and society. Their failure can have severe impact on both economics and human life. Hence, these systems have become an attractive target for attacks, both physical and cyber. A number of attack detection methods have been proposed, however they are characterized by a low detection rate, a substantial false positive rate, or are system specific. In this paper, we study an attack detection method based on simple and lightweight neural networks, namely, 1D convolutions and autoencoders. We apply these networks to both the time and frequency domains of the collected data and discuss pros and cons of each approach. We evaluate the suggested method on three popular public datasets and achieve detection rates matching or exceeding previously published detection results, while featuring small footprint, short training and detection times, and generality. We also demonstrate the effectiveness of PCA, which, given proper data preprocessing and feature selection, can provide high attack detection scores in many settings. Finally, we study the proposed method's robustness against adversarial attacks, that exploit inherent blind spots of neural networks to evade detection while achieving their intended physical effect. Our results show that the proposed method is robust to such evasion attacks: in order to evade detection, the attacker is forced to sacrifice the desired physical impact on the system. This finding suggests that neural networks trained under the constraints of the laws of physics can be trusted more than networks trained under more flexible conditions." @default.
- W4288289328 created "2022-07-28" @default.
- W4288289328 creator A5002391103 @default.
- W4288289328 creator A5018732611 @default.
- W4288289328 date "2019-07-02" @default.
- W4288289328 modified "2023-09-24" @default.
- W4288289328 title "Efficient Cyber Attacks Detection in Industrial Control Systems Using Lightweight Neural Networks and PCA" @default.
- W4288289328 doi "https://doi.org/10.48550/arxiv.1907.01216" @default.
- W4288289328 hasPublicationYear "2019" @default.
- W4288289328 type Work @default.
- W4288289328 citedByCount "0" @default.
- W4288289328 crossrefType "posted-content" @default.
- W4288289328 hasAuthorship W4288289328A5002391103 @default.
- W4288289328 hasAuthorship W4288289328A5018732611 @default.
- W4288289328 hasBestOaLocation W42882893281 @default.
- W4288289328 hasConcept C104317684 @default.
- W4288289328 hasConcept C111919701 @default.
- W4288289328 hasConcept C119857082 @default.
- W4288289328 hasConcept C124101348 @default.
- W4288289328 hasConcept C154945302 @default.
- W4288289328 hasConcept C15744967 @default.
- W4288289328 hasConcept C165696696 @default.
- W4288289328 hasConcept C179768478 @default.
- W4288289328 hasConcept C185592680 @default.
- W4288289328 hasConcept C2775924081 @default.
- W4288289328 hasConcept C2780767217 @default.
- W4288289328 hasConcept C34736171 @default.
- W4288289328 hasConcept C35525427 @default.
- W4288289328 hasConcept C38652104 @default.
- W4288289328 hasConcept C40071531 @default.
- W4288289328 hasConcept C41008148 @default.
- W4288289328 hasConcept C50644808 @default.
- W4288289328 hasConcept C542102704 @default.
- W4288289328 hasConcept C55493867 @default.
- W4288289328 hasConcept C63479239 @default.
- W4288289328 hasConceptScore W4288289328C104317684 @default.
- W4288289328 hasConceptScore W4288289328C111919701 @default.
- W4288289328 hasConceptScore W4288289328C119857082 @default.
- W4288289328 hasConceptScore W4288289328C124101348 @default.
- W4288289328 hasConceptScore W4288289328C154945302 @default.
- W4288289328 hasConceptScore W4288289328C15744967 @default.
- W4288289328 hasConceptScore W4288289328C165696696 @default.
- W4288289328 hasConceptScore W4288289328C179768478 @default.
- W4288289328 hasConceptScore W4288289328C185592680 @default.
- W4288289328 hasConceptScore W4288289328C2775924081 @default.
- W4288289328 hasConceptScore W4288289328C2780767217 @default.
- W4288289328 hasConceptScore W4288289328C34736171 @default.
- W4288289328 hasConceptScore W4288289328C35525427 @default.
- W4288289328 hasConceptScore W4288289328C38652104 @default.
- W4288289328 hasConceptScore W4288289328C40071531 @default.
- W4288289328 hasConceptScore W4288289328C41008148 @default.
- W4288289328 hasConceptScore W4288289328C50644808 @default.
- W4288289328 hasConceptScore W4288289328C542102704 @default.
- W4288289328 hasConceptScore W4288289328C55493867 @default.
- W4288289328 hasConceptScore W4288289328C63479239 @default.
- W4288289328 hasLocation W42882893281 @default.
- W4288289328 hasOpenAccess W4288289328 @default.
- W4288289328 hasPrimaryLocation W42882893281 @default.
- W4288289328 hasRelatedWork W2155224723 @default.
- W4288289328 hasRelatedWork W2342018874 @default.
- W4288289328 hasRelatedWork W2383487638 @default.
- W4288289328 hasRelatedWork W2593375656 @default.
- W4288289328 hasRelatedWork W2888213213 @default.
- W4288289328 hasRelatedWork W2898623289 @default.
- W4288289328 hasRelatedWork W2903946799 @default.
- W4288289328 hasRelatedWork W2920943347 @default.
- W4288289328 hasRelatedWork W3147872107 @default.
- W4288289328 hasRelatedWork W4213196493 @default.
- W4288289328 isParatext "false" @default.
- W4288289328 isRetracted "false" @default.
- W4288289328 workType "article" @default.