Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288315082> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4288315082 abstract "Crop production needs to increase in a sustainable manner to meet the growing global demand for food. To identify crop varieties with high yield potential, plant scientists and breeders evaluate the performance of hundreds of lines in multiple locations over several years. To facilitate the process of selecting advanced varieties, an automated framework was developed in this study. A hyperspectral camera was mounted on an unmanned aerial vehicle to collect aerial imagery with high spatial and spectral resolution. Aerial images were captured in two consecutive growing seasons from three experimental yield fields composed of hundreds experimental plots (1x2.4 meter), each contained a single wheat line. The grain of more than thousand wheat plots was harvested by a combine, weighed, and recorded as the ground truth data. To leverage the high spatial resolution and investigate the yield variation within the plots, images of plots were divided into sub-plots by integrating image processing techniques and spectral mixture analysis with the expert domain knowledge. Afterwards, the sub-plot dataset was divided into train, validation, and test sets using stratified sampling. Subsequent to extracting features from each sub-plot, deep neural networks were trained for yield estimation. The coefficient of determination for predicting the yield of the test dataset at sub-plot scale was 0.79 with root mean square error of 5.90 grams. In addition to providing insights into yield variation at sub-plot scale, the proposed framework can facilitate the process of high-throughput yield phenotyping as a valuable decision support tool. It offers the possibility of (i) remote visual inspection of the plots, (ii) studying the effect of crop density on yield, and (iii) optimizing plot size to investigate more lines in a dedicated field each year." @default.
- W4288315082 created "2022-07-28" @default.
- W4288315082 creator A5008328878 @default.
- W4288315082 creator A5025664071 @default.
- W4288315082 creator A5083754346 @default.
- W4288315082 date "2019-06-23" @default.
- W4288315082 modified "2023-10-14" @default.
- W4288315082 title "Aerial hyperspectral imagery and deep neural networks for high-throughput yield phenotyping in wheat" @default.
- W4288315082 doi "https://doi.org/10.48550/arxiv.1906.09666" @default.
- W4288315082 hasPublicationYear "2019" @default.
- W4288315082 type Work @default.
- W4288315082 citedByCount "0" @default.
- W4288315082 crossrefType "posted-content" @default.
- W4288315082 hasAuthorship W4288315082A5008328878 @default.
- W4288315082 hasAuthorship W4288315082A5025664071 @default.
- W4288315082 hasAuthorship W4288315082A5083754346 @default.
- W4288315082 hasBestOaLocation W42883150821 @default.
- W4288315082 hasConcept C105795698 @default.
- W4288315082 hasConcept C119857082 @default.
- W4288315082 hasConcept C146849305 @default.
- W4288315082 hasConcept C153083717 @default.
- W4288315082 hasConcept C153180895 @default.
- W4288315082 hasConcept C154945302 @default.
- W4288315082 hasConcept C159078339 @default.
- W4288315082 hasConcept C167651023 @default.
- W4288315082 hasConcept C205649164 @default.
- W4288315082 hasConcept C31462909 @default.
- W4288315082 hasConcept C33923547 @default.
- W4288315082 hasConcept C41008148 @default.
- W4288315082 hasConcept C62649853 @default.
- W4288315082 hasConceptScore W4288315082C105795698 @default.
- W4288315082 hasConceptScore W4288315082C119857082 @default.
- W4288315082 hasConceptScore W4288315082C146849305 @default.
- W4288315082 hasConceptScore W4288315082C153083717 @default.
- W4288315082 hasConceptScore W4288315082C153180895 @default.
- W4288315082 hasConceptScore W4288315082C154945302 @default.
- W4288315082 hasConceptScore W4288315082C159078339 @default.
- W4288315082 hasConceptScore W4288315082C167651023 @default.
- W4288315082 hasConceptScore W4288315082C205649164 @default.
- W4288315082 hasConceptScore W4288315082C31462909 @default.
- W4288315082 hasConceptScore W4288315082C33923547 @default.
- W4288315082 hasConceptScore W4288315082C41008148 @default.
- W4288315082 hasConceptScore W4288315082C62649853 @default.
- W4288315082 hasLocation W42883150821 @default.
- W4288315082 hasLocation W42883150822 @default.
- W4288315082 hasOpenAccess W4288315082 @default.
- W4288315082 hasPrimaryLocation W42883150821 @default.
- W4288315082 hasRelatedWork W2028628118 @default.
- W4288315082 hasRelatedWork W2050773338 @default.
- W4288315082 hasRelatedWork W2057836452 @default.
- W4288315082 hasRelatedWork W2441762250 @default.
- W4288315082 hasRelatedWork W2749216617 @default.
- W4288315082 hasRelatedWork W2802558446 @default.
- W4288315082 hasRelatedWork W2906879843 @default.
- W4288315082 hasRelatedWork W3036507165 @default.
- W4288315082 hasRelatedWork W3173596272 @default.
- W4288315082 hasRelatedWork W2586825481 @default.
- W4288315082 isParatext "false" @default.
- W4288315082 isRetracted "false" @default.
- W4288315082 workType "article" @default.