Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288334516> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4288334516 abstract "Purpose: To assess the utility of deep learning in the detection of geographic atrophy (GA) from color fundus photographs; secondary aim to explore potential utility in detecting central GA (CGA). Design: A deep learning model was developed to detect the presence of GA in color fundus photographs, and two additional models to detect CGA in different scenarios. Participants: 59,812 color fundus photographs from longitudinal follow up of 4,582 participants in the AREDS dataset. Gold standard labels were from human expert reading center graders using a standardized protocol. Methods: A deep learning model was trained to use color fundus photographs to predict GA presence from a population of eyes with no AMD to advanced AMD. A second model was trained to predict CGA presence from the same population. A third model was trained to predict CGA presence from the subset of eyes with GA. For training and testing, 5-fold cross-validation was employed. For comparison with human clinician performance, model performance was compared with that of 88 retinal specialists. Results: The deep learning models (GA detection, CGA detection from all eyes, and centrality detection from GA eyes) had AUC of 0.933-0.976, 0.939-0.976, and 0.827-0.888, respectively. The GA detection model had accuracy, sensitivity, specificity, and precision of 0.965, 0.692, 0.978, and 0.584, respectively. The CGA detection model had equivalent values of 0.966, 0.763, 0.971, and 0.394. The centrality detection model had equivalent values of 0.762, 0.782, 0.729, and 0.799. Conclusions: A deep learning model demonstrated high accuracy for the automated detection of GA. The AUC was non-inferior to that of human retinal specialists. Deep learning approaches may also be applied to the identification of CGA. The code and pretrained models are publicly available at https://github.com/ncbi-nlp/DeepSeeNet." @default.
- W4288334516 created "2022-07-28" @default.
- W4288334516 creator A5025930449 @default.
- W4288334516 creator A5033862822 @default.
- W4288334516 creator A5036302697 @default.
- W4288334516 creator A5039913574 @default.
- W4288334516 creator A5042874172 @default.
- W4288334516 creator A5083081872 @default.
- W4288334516 creator A5088588454 @default.
- W4288334516 creator A5090802305 @default.
- W4288334516 date "2019-06-07" @default.
- W4288334516 modified "2023-10-14" @default.
- W4288334516 title "A deep learning approach for automated detection of geographic atrophy from color fundus photographs" @default.
- W4288334516 doi "https://doi.org/10.48550/arxiv.1906.03153" @default.
- W4288334516 hasPublicationYear "2019" @default.
- W4288334516 type Work @default.
- W4288334516 citedByCount "0" @default.
- W4288334516 crossrefType "posted-content" @default.
- W4288334516 hasAuthorship W4288334516A5025930449 @default.
- W4288334516 hasAuthorship W4288334516A5033862822 @default.
- W4288334516 hasAuthorship W4288334516A5036302697 @default.
- W4288334516 hasAuthorship W4288334516A5039913574 @default.
- W4288334516 hasAuthorship W4288334516A5042874172 @default.
- W4288334516 hasAuthorship W4288334516A5083081872 @default.
- W4288334516 hasAuthorship W4288334516A5088588454 @default.
- W4288334516 hasAuthorship W4288334516A5090802305 @default.
- W4288334516 hasBestOaLocation W42883345161 @default.
- W4288334516 hasConcept C108583219 @default.
- W4288334516 hasConcept C118487528 @default.
- W4288334516 hasConcept C153180895 @default.
- W4288334516 hasConcept C154945302 @default.
- W4288334516 hasConcept C2776391266 @default.
- W4288334516 hasConcept C2908647359 @default.
- W4288334516 hasConcept C41008148 @default.
- W4288334516 hasConcept C71924100 @default.
- W4288334516 hasConcept C99454951 @default.
- W4288334516 hasConceptScore W4288334516C108583219 @default.
- W4288334516 hasConceptScore W4288334516C118487528 @default.
- W4288334516 hasConceptScore W4288334516C153180895 @default.
- W4288334516 hasConceptScore W4288334516C154945302 @default.
- W4288334516 hasConceptScore W4288334516C2776391266 @default.
- W4288334516 hasConceptScore W4288334516C2908647359 @default.
- W4288334516 hasConceptScore W4288334516C41008148 @default.
- W4288334516 hasConceptScore W4288334516C71924100 @default.
- W4288334516 hasConceptScore W4288334516C99454951 @default.
- W4288334516 hasLocation W42883345161 @default.
- W4288334516 hasOpenAccess W4288334516 @default.
- W4288334516 hasPrimaryLocation W42883345161 @default.
- W4288334516 hasRelatedWork W2005051400 @default.
- W4288334516 hasRelatedWork W2294926082 @default.
- W4288334516 hasRelatedWork W2297761292 @default.
- W4288334516 hasRelatedWork W2738221750 @default.
- W4288334516 hasRelatedWork W2773120646 @default.
- W4288334516 hasRelatedWork W2898036114 @default.
- W4288334516 hasRelatedWork W3156786002 @default.
- W4288334516 hasRelatedWork W4211209597 @default.
- W4288334516 hasRelatedWork W4245792239 @default.
- W4288334516 hasRelatedWork W3108696707 @default.
- W4288334516 isParatext "false" @default.
- W4288334516 isRetracted "false" @default.
- W4288334516 workType "article" @default.