Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288360075> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4288360075 abstract "Graphs are a natural abstraction for many problems where nodes represent entities and edges represent a relationship across entities. An important area of research that has emerged over the last decade is the use of graphs as a vehicle for non-linear dimensionality reduction in a manner akin to previous efforts based on manifold learning with uses for downstream database processing, machine learning and visualization. In this systematic yet comprehensive experimental survey, we benchmark several popular network representation learning methods operating on two key tasks: link prediction and node classification. We examine the performance of 12 unsupervised embedding methods on 15 datasets. To the best of our knowledge, the scale of our study -- both in terms of the number of methods and number of datasets -- is the largest to date. Our results reveal several key insights about work-to-date in this space. First, we find that certain baseline methods (task-specific heuristics, as well as classic manifold methods) that have often been dismissed or are not considered by previous efforts can compete on certain types of datasets if they are tuned appropriately. Second, we find that recent methods based on matrix factorization offer a small but relatively consistent advantage over alternative methods (e.g., random-walk based methods) from a qualitative standpoint. Specifically, we find that MNMF, a community preserving embedding method, is the most competitive method for the link prediction task. While NetMF is the most competitive baseline for node classification. Third, no single method completely outperforms other embedding methods on both node classification and link prediction tasks. We also present several drill-down analysis that reveals settings under which certain algorithms perform well (e.g., the role of neighborhood context on performance) -- guiding the end-user." @default.
- W4288360075 created "2022-07-29" @default.
- W4288360075 creator A5000218861 @default.
- W4288360075 creator A5004644685 @default.
- W4288360075 creator A5005531495 @default.
- W4288360075 creator A5009374923 @default.
- W4288360075 creator A5015619335 @default.
- W4288360075 creator A5030820031 @default.
- W4288360075 creator A5035638861 @default.
- W4288360075 creator A5048980682 @default.
- W4288360075 creator A5069366342 @default.
- W4288360075 creator A5070578934 @default.
- W4288360075 creator A5074601218 @default.
- W4288360075 creator A5080762850 @default.
- W4288360075 date "2019-05-02" @default.
- W4288360075 modified "2023-10-18" @default.
- W4288360075 title "Network Representation Learning: Consolidation and Renewed Bearing" @default.
- W4288360075 doi "https://doi.org/10.48550/arxiv.1905.00987" @default.
- W4288360075 hasPublicationYear "2019" @default.
- W4288360075 type Work @default.
- W4288360075 citedByCount "0" @default.
- W4288360075 crossrefType "posted-content" @default.
- W4288360075 hasAuthorship W4288360075A5000218861 @default.
- W4288360075 hasAuthorship W4288360075A5004644685 @default.
- W4288360075 hasAuthorship W4288360075A5005531495 @default.
- W4288360075 hasAuthorship W4288360075A5009374923 @default.
- W4288360075 hasAuthorship W4288360075A5015619335 @default.
- W4288360075 hasAuthorship W4288360075A5030820031 @default.
- W4288360075 hasAuthorship W4288360075A5035638861 @default.
- W4288360075 hasAuthorship W4288360075A5048980682 @default.
- W4288360075 hasAuthorship W4288360075A5069366342 @default.
- W4288360075 hasAuthorship W4288360075A5070578934 @default.
- W4288360075 hasAuthorship W4288360075A5074601218 @default.
- W4288360075 hasAuthorship W4288360075A5080762850 @default.
- W4288360075 hasBestOaLocation W42883600751 @default.
- W4288360075 hasConcept C111919701 @default.
- W4288360075 hasConcept C119857082 @default.
- W4288360075 hasConcept C124101348 @default.
- W4288360075 hasConcept C127705205 @default.
- W4288360075 hasConcept C154945302 @default.
- W4288360075 hasConcept C26517878 @default.
- W4288360075 hasConcept C38652104 @default.
- W4288360075 hasConcept C41008148 @default.
- W4288360075 hasConcept C41608201 @default.
- W4288360075 hasConcept C59404180 @default.
- W4288360075 hasConcept C70518039 @default.
- W4288360075 hasConcept C80444323 @default.
- W4288360075 hasConceptScore W4288360075C111919701 @default.
- W4288360075 hasConceptScore W4288360075C119857082 @default.
- W4288360075 hasConceptScore W4288360075C124101348 @default.
- W4288360075 hasConceptScore W4288360075C127705205 @default.
- W4288360075 hasConceptScore W4288360075C154945302 @default.
- W4288360075 hasConceptScore W4288360075C26517878 @default.
- W4288360075 hasConceptScore W4288360075C38652104 @default.
- W4288360075 hasConceptScore W4288360075C41008148 @default.
- W4288360075 hasConceptScore W4288360075C41608201 @default.
- W4288360075 hasConceptScore W4288360075C59404180 @default.
- W4288360075 hasConceptScore W4288360075C70518039 @default.
- W4288360075 hasConceptScore W4288360075C80444323 @default.
- W4288360075 hasLocation W42883600751 @default.
- W4288360075 hasOpenAccess W4288360075 @default.
- W4288360075 hasPrimaryLocation W42883600751 @default.
- W4288360075 hasRelatedWork W1764158405 @default.
- W4288360075 hasRelatedWork W2390245496 @default.
- W4288360075 hasRelatedWork W2922457425 @default.
- W4288360075 hasRelatedWork W2929964205 @default.
- W4288360075 hasRelatedWork W3183987844 @default.
- W4288360075 hasRelatedWork W4250304930 @default.
- W4288360075 hasRelatedWork W4312393190 @default.
- W4288360075 hasRelatedWork W4315435406 @default.
- W4288360075 hasRelatedWork W4315777907 @default.
- W4288360075 hasRelatedWork W4362605344 @default.
- W4288360075 isParatext "false" @default.
- W4288360075 isRetracted "false" @default.
- W4288360075 workType "article" @default.