Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288365112> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W4288365112 abstract "We address the problem of catching all speed $1$ geodesics of a Riemannian manifold with a moving ball: given a compact Riemannian manifold $(M,g)$ and small parameters $varepsilon>0$ and $v>0$, is it possible to find $T>0$ and an absolutely continuous map $x:[0,T]rightarrow M, tmapsto x(t)$ satisfying $|dot{x}|_{infty}leq v$ and such that any geodesic of $(M,g)$ traveled at speed $1$ meets the open ball $B_g(x(t),varepsilon)subset M$ within time $T$? Our main motivation comes from the control of the wave equation: our results show that the controllability of the wave equation can sometimes be improved by allowing the domain of control to move adequately, even very slowly. We first prove that, in any Riemannian manifold $(M,g)$ satisfying a geodesic recurrence condition (GRC), our problem has a positive answer for any $varepsilon>0$ and $v>0$, and we give examples of Riemannian manifolds $(M,g)$ for which (GRC) is satisfied. Then, we build an explicit example of a domain $Xsubsetmathbb{R}^2$ (with flat metric) containing convex obstacles, not satisfying (GRC), for which our problem has a negative answer if $epsilon$ and $v$ are small enough, i.e., no sufficiently small ball moving sufficiently slowly can catch all geodesics of $X$." @default.
- W4288365112 created "2022-07-29" @default.
- W4288365112 creator A5018328202 @default.
- W4288365112 date "2020-02-26" @default.
- W4288365112 modified "2023-09-30" @default.
- W4288365112 title "Catching all geodesics of a manifold with moving balls and application to controllability of the wave equation" @default.
- W4288365112 hasPublicationYear "2020" @default.
- W4288365112 type Work @default.
- W4288365112 citedByCount "0" @default.
- W4288365112 crossrefType "posted-content" @default.
- W4288365112 hasAuthorship W4288365112A5018328202 @default.
- W4288365112 hasBestOaLocation W42883651121 @default.
- W4288365112 hasConcept C121332964 @default.
- W4288365112 hasConcept C127413603 @default.
- W4288365112 hasConcept C134306372 @default.
- W4288365112 hasConcept C165818556 @default.
- W4288365112 hasConcept C28826006 @default.
- W4288365112 hasConcept C33923547 @default.
- W4288365112 hasConcept C48209547 @default.
- W4288365112 hasConcept C529865628 @default.
- W4288365112 hasConcept C59696629 @default.
- W4288365112 hasConcept C78519656 @default.
- W4288365112 hasConceptScore W4288365112C121332964 @default.
- W4288365112 hasConceptScore W4288365112C127413603 @default.
- W4288365112 hasConceptScore W4288365112C134306372 @default.
- W4288365112 hasConceptScore W4288365112C165818556 @default.
- W4288365112 hasConceptScore W4288365112C28826006 @default.
- W4288365112 hasConceptScore W4288365112C33923547 @default.
- W4288365112 hasConceptScore W4288365112C48209547 @default.
- W4288365112 hasConceptScore W4288365112C529865628 @default.
- W4288365112 hasConceptScore W4288365112C59696629 @default.
- W4288365112 hasConceptScore W4288365112C78519656 @default.
- W4288365112 hasLocation W42883651121 @default.
- W4288365112 hasLocation W42883651122 @default.
- W4288365112 hasLocation W42883651123 @default.
- W4288365112 hasOpenAccess W4288365112 @default.
- W4288365112 hasPrimaryLocation W42883651121 @default.
- W4288365112 hasRelatedWork W2022184239 @default.
- W4288365112 hasRelatedWork W2038998384 @default.
- W4288365112 hasRelatedWork W2059961793 @default.
- W4288365112 hasRelatedWork W2091017118 @default.
- W4288365112 hasRelatedWork W3007132841 @default.
- W4288365112 hasRelatedWork W3031260618 @default.
- W4288365112 hasRelatedWork W3175347962 @default.
- W4288365112 hasRelatedWork W3214204932 @default.
- W4288365112 hasRelatedWork W4288365112 @default.
- W4288365112 hasRelatedWork W4353103777 @default.
- W4288365112 isParatext "false" @default.
- W4288365112 isRetracted "false" @default.
- W4288365112 workType "article" @default.