Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288386084> ?p ?o ?g. }
- W4288386084 endingPage "4821" @default.
- W4288386084 startingPage "4809" @default.
- W4288386084 abstract "Precision spraying of synthetic herbicides can reduce herbicide input. Previous research demonstrated the effectiveness of using image classification neural networks for detecting weeds growing in turfgrass, but did not attempt to discriminate weed species and locate the weeds on the input images. The objectives of this research were to: (i) investigate the feasibility of training deep learning models using grid cells (subimages) to detect the location of weeds on the image by identifying whether or not the grid cells contain weeds; and (ii) evaluate DenseNet, EfficientNetV2, ResNet, RegNet and VGGNet to detect and discriminate multiple weed species growing in turfgrass (multi-classifier) and detect and discriminate weeds (regardless of weed species) and turfgrass (two-classifier).The VGGNet multi-classifier exhibited an F1 score of 0.950 when used to detect common dandelion and achieved high F1 scores of ≥0.983 to detect and discriminate the subimages containing dallisgrass, purple nutsedge and white clover growing in bermudagrass turf. DenseNet, EfficientNetV2 and RegNet multi-classifiers exhibited high F1 scores of ≥0.984 for detecting dallisgrass and purple nutsedge. Among the evaluated neural networks, EfficientNetV2 two-classifier exhibited the highest F1 scores (≥0.981) for exclusively detecting and discriminating subimages containing weeds and turfgrass.The proposed method can accurately identify the grid cells containing weeds and thus precisely locate the weeds on the input images. Overall, we conclude that the proposed method can be used in the machine vision subsystem of smart sprayers to locate weeds and make the decision for precision spraying herbicides onto the individual map cells. © 2022 Society of Chemical Industry." @default.
- W4288386084 created "2022-07-29" @default.
- W4288386084 creator A5005611002 @default.
- W4288386084 creator A5030804351 @default.
- W4288386084 creator A5048580680 @default.
- W4288386084 creator A5073768392 @default.
- W4288386084 creator A5085462851 @default.
- W4288386084 date "2022-08-11" @default.
- W4288386084 modified "2023-09-26" @default.
- W4288386084 title "A deep learning‐based method for classification, detection, and localization of weeds in turfgrass" @default.
- W4288386084 cites W1918006664 @default.
- W4288386084 cites W1996481851 @default.
- W4288386084 cites W2020637043 @default.
- W4288386084 cites W2027777325 @default.
- W4288386084 cites W2033149077 @default.
- W4288386084 cites W2086783024 @default.
- W4288386084 cites W2125588171 @default.
- W4288386084 cites W2150341616 @default.
- W4288386084 cites W2170505850 @default.
- W4288386084 cites W2194775991 @default.
- W4288386084 cites W2285455483 @default.
- W4288386084 cites W2290252773 @default.
- W4288386084 cites W2418106930 @default.
- W4288386084 cites W2475352655 @default.
- W4288386084 cites W2545880220 @default.
- W4288386084 cites W2617798103 @default.
- W4288386084 cites W2767767563 @default.
- W4288386084 cites W2885770726 @default.
- W4288386084 cites W2903449250 @default.
- W4288386084 cites W2905872776 @default.
- W4288386084 cites W2910919603 @default.
- W4288386084 cites W2911981452 @default.
- W4288386084 cites W2913227116 @default.
- W4288386084 cites W2914595396 @default.
- W4288386084 cites W2915011392 @default.
- W4288386084 cites W2919115771 @default.
- W4288386084 cites W2944014569 @default.
- W4288386084 cites W2963270286 @default.
- W4288386084 cites W2963446712 @default.
- W4288386084 cites W2986154667 @default.
- W4288386084 cites W2995058802 @default.
- W4288386084 cites W3011932449 @default.
- W4288386084 cites W3034580072 @default.
- W4288386084 cites W3035318659 @default.
- W4288386084 cites W3036898824 @default.
- W4288386084 cites W3039385416 @default.
- W4288386084 cites W3039926407 @default.
- W4288386084 cites W3047236570 @default.
- W4288386084 cites W3063386354 @default.
- W4288386084 cites W3082499117 @default.
- W4288386084 cites W3136376090 @default.
- W4288386084 cites W3136950817 @default.
- W4288386084 cites W3184602069 @default.
- W4288386084 cites W3199890259 @default.
- W4288386084 cites W4205146000 @default.
- W4288386084 cites W4242300841 @default.
- W4288386084 doi "https://doi.org/10.1002/ps.7102" @default.
- W4288386084 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35900854" @default.
- W4288386084 hasPublicationYear "2022" @default.
- W4288386084 type Work @default.
- W4288386084 citedByCount "9" @default.
- W4288386084 countsByYear W42883860842022 @default.
- W4288386084 countsByYear W42883860842023 @default.
- W4288386084 crossrefType "journal-article" @default.
- W4288386084 hasAuthorship W4288386084A5005611002 @default.
- W4288386084 hasAuthorship W4288386084A5030804351 @default.
- W4288386084 hasAuthorship W4288386084A5048580680 @default.
- W4288386084 hasAuthorship W4288386084A5073768392 @default.
- W4288386084 hasAuthorship W4288386084A5085462851 @default.
- W4288386084 hasConcept C108583219 @default.
- W4288386084 hasConcept C119857082 @default.
- W4288386084 hasConcept C153180895 @default.
- W4288386084 hasConcept C154945302 @default.
- W4288386084 hasConcept C187691185 @default.
- W4288386084 hasConcept C2524010 @default.
- W4288386084 hasConcept C2775891814 @default.
- W4288386084 hasConcept C2944601119 @default.
- W4288386084 hasConcept C33923547 @default.
- W4288386084 hasConcept C41008148 @default.
- W4288386084 hasConcept C6557445 @default.
- W4288386084 hasConcept C81363708 @default.
- W4288386084 hasConcept C86803240 @default.
- W4288386084 hasConcept C95623464 @default.
- W4288386084 hasConceptScore W4288386084C108583219 @default.
- W4288386084 hasConceptScore W4288386084C119857082 @default.
- W4288386084 hasConceptScore W4288386084C153180895 @default.
- W4288386084 hasConceptScore W4288386084C154945302 @default.
- W4288386084 hasConceptScore W4288386084C187691185 @default.
- W4288386084 hasConceptScore W4288386084C2524010 @default.
- W4288386084 hasConceptScore W4288386084C2775891814 @default.
- W4288386084 hasConceptScore W4288386084C2944601119 @default.
- W4288386084 hasConceptScore W4288386084C33923547 @default.
- W4288386084 hasConceptScore W4288386084C41008148 @default.
- W4288386084 hasConceptScore W4288386084C6557445 @default.
- W4288386084 hasConceptScore W4288386084C81363708 @default.
- W4288386084 hasConceptScore W4288386084C86803240 @default.
- W4288386084 hasConceptScore W4288386084C95623464 @default.
- W4288386084 hasFunder F4320309870 @default.