Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288408056> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4288408056 abstract "Purpose: In surgical navigation, pre-operative organ models are presented to surgeons during the intervention to help them in efficiently finding their target. In the case of soft tissue, these models need to be deformed and adapted to the current situation by using intra-operative sensor data. A promising method to realize this are real-time capable biomechanical models. Methods: We train a fully convolutional neural network to estimate a displacement field of all points inside an organ when given only the displacement of a part of the organ's surface. The network trains on entirely synthetic data of random organ-like meshes, which allows us to generate much more data than is otherwise available. The input and output data is discretized into a regular grid, allowing us to fully utilize the capabilities of convolutional operators and to train and infer in a highly parallelized manner. Results: The system is evaluated on in-silico liver models, phantom liver data and human in-vivo breathing data. We test the performance with varying material parameters, organ shapes and amount of visible surface. Even though the network is only trained on synthetic data, it adapts well to the various cases and gives a good estimation of the internal organ displacement. The inference runs at over 50 frames per second. Conclusions: We present a novel method for training a data-driven, real-time capable deformation model. The accuracy is comparable to other registration methods, it adapts very well to previously unseen organs and does not need to be re-trained for every patient. The high inferring speed makes this method useful for many applications such as surgical navigation and real-time simulation." @default.
- W4288408056 created "2022-07-29" @default.
- W4288408056 creator A5003648994 @default.
- W4288408056 creator A5014919291 @default.
- W4288408056 creator A5032176167 @default.
- W4288408056 creator A5070745917 @default.
- W4288408056 date "2019-03-26" @default.
- W4288408056 modified "2023-10-18" @default.
- W4288408056 title "Learning Soft Tissue Behavior of Organs for Surgical Navigation with Convolutional Neural Networks" @default.
- W4288408056 doi "https://doi.org/10.48550/arxiv.1904.00722" @default.
- W4288408056 hasPublicationYear "2019" @default.
- W4288408056 type Work @default.
- W4288408056 citedByCount "0" @default.
- W4288408056 crossrefType "posted-content" @default.
- W4288408056 hasAuthorship W4288408056A5003648994 @default.
- W4288408056 hasAuthorship W4288408056A5014919291 @default.
- W4288408056 hasAuthorship W4288408056A5032176167 @default.
- W4288408056 hasAuthorship W4288408056A5070745917 @default.
- W4288408056 hasBestOaLocation W42884080561 @default.
- W4288408056 hasConcept C104293457 @default.
- W4288408056 hasConcept C107551265 @default.
- W4288408056 hasConcept C121684516 @default.
- W4288408056 hasConcept C126838900 @default.
- W4288408056 hasConcept C154945302 @default.
- W4288408056 hasConcept C15744967 @default.
- W4288408056 hasConcept C160920958 @default.
- W4288408056 hasConcept C2776214188 @default.
- W4288408056 hasConcept C31487907 @default.
- W4288408056 hasConcept C31972630 @default.
- W4288408056 hasConcept C41008148 @default.
- W4288408056 hasConcept C542102704 @default.
- W4288408056 hasConcept C71924100 @default.
- W4288408056 hasConcept C81363708 @default.
- W4288408056 hasConceptScore W4288408056C104293457 @default.
- W4288408056 hasConceptScore W4288408056C107551265 @default.
- W4288408056 hasConceptScore W4288408056C121684516 @default.
- W4288408056 hasConceptScore W4288408056C126838900 @default.
- W4288408056 hasConceptScore W4288408056C154945302 @default.
- W4288408056 hasConceptScore W4288408056C15744967 @default.
- W4288408056 hasConceptScore W4288408056C160920958 @default.
- W4288408056 hasConceptScore W4288408056C2776214188 @default.
- W4288408056 hasConceptScore W4288408056C31487907 @default.
- W4288408056 hasConceptScore W4288408056C31972630 @default.
- W4288408056 hasConceptScore W4288408056C41008148 @default.
- W4288408056 hasConceptScore W4288408056C542102704 @default.
- W4288408056 hasConceptScore W4288408056C71924100 @default.
- W4288408056 hasConceptScore W4288408056C81363708 @default.
- W4288408056 hasLocation W42884080561 @default.
- W4288408056 hasOpenAccess W4288408056 @default.
- W4288408056 hasPrimaryLocation W42884080561 @default.
- W4288408056 hasRelatedWork W2019992318 @default.
- W4288408056 hasRelatedWork W2113451773 @default.
- W4288408056 hasRelatedWork W2163004275 @default.
- W4288408056 hasRelatedWork W2735477435 @default.
- W4288408056 hasRelatedWork W2955938200 @default.
- W4288408056 hasRelatedWork W2998526951 @default.
- W4288408056 hasRelatedWork W3119610945 @default.
- W4288408056 hasRelatedWork W3201124108 @default.
- W4288408056 hasRelatedWork W4293391988 @default.
- W4288408056 hasRelatedWork W4311677448 @default.
- W4288408056 isParatext "false" @default.
- W4288408056 isRetracted "false" @default.
- W4288408056 workType "article" @default.