Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288420493> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4288420493 endingPage "102428" @default.
- W4288420493 startingPage "102428" @default.
- W4288420493 abstract "• Recursive and collaborative approach where knowledge gained from machine learning models is integrated with ontological knowledge. • Ontology-based semantic knowledge framework supports recursive communication with experts for data-driven RST weldability certification. • Extracted RSW concepts from the decision trees formalized by the RSW ontology and converted the decision rules into SWRL rules. • Transformed datasets helped to develop improved machine learning models that work as a new source of weldability prediction. Data-driven techniques have shown promising results in the analysis and understanding of complex welding processes. Data analytics play a significant role to turn data into valuable insights to assist in the weldability certification decision-making for Resistance Spot Welding (RSW) as well. However, to successfully perform the associated data analytics, domain knowledge is essential to construct more ‘sense-making’ analytics models, as often the models cannot properly capture the nuances of the domain and do not properly indicate the relationship among the RSW concepts and parameters. Thus, machine learning models developed from rough experimental data often do not provide models meaningful and sensible to the domain expert. In this article, we employ a recursive approach between the domain experts and data-driven models so that the knowledge of the domain experts can be integrated into the weldability certification decision-making process. An ontology-based semantic knowledge framework supports this recursive communication while helping the experts to instil more confidence in the developed analytics models. The collaborative and recursive approach implemented in this study helps the domain experts to tap into their domain knowledge and form expert opinions using the formalized semantic RSW concepts and decision rules. The expert opinions are then used to learn new knowledge about the RSW domain and transform the RSW datasets by incorporating significant features that were not included in the earlier models. The transformed datasets help us to develop improved machine learning models, which in turn work as a new source of semantic knowledge, as we have discovered through our pilot implementation." @default.
- W4288420493 created "2022-07-29" @default.
- W4288420493 creator A5017433810 @default.
- W4288420493 creator A5084168891 @default.
- W4288420493 date "2023-02-01" @default.
- W4288420493 modified "2023-10-02" @default.
- W4288420493 title "Recursive approach to combine expert knowledge and data-driven RSW weldability certification decision making process" @default.
- W4288420493 cites W1604457381 @default.
- W4288420493 cites W1810406100 @default.
- W4288420493 cites W1840402859 @default.
- W4288420493 cites W1977958867 @default.
- W4288420493 cites W1981296509 @default.
- W4288420493 cites W1995058231 @default.
- W4288420493 cites W2023369697 @default.
- W4288420493 cites W2036725634 @default.
- W4288420493 cites W2038606746 @default.
- W4288420493 cites W2039717629 @default.
- W4288420493 cites W2076017634 @default.
- W4288420493 cites W2100221835 @default.
- W4288420493 cites W2155632959 @default.
- W4288420493 cites W2168427900 @default.
- W4288420493 cites W2269216170 @default.
- W4288420493 cites W2293425979 @default.
- W4288420493 cites W2293749997 @default.
- W4288420493 cites W2552265195 @default.
- W4288420493 cites W2567702993 @default.
- W4288420493 cites W2568317984 @default.
- W4288420493 cites W2571629970 @default.
- W4288420493 cites W2781113188 @default.
- W4288420493 cites W2789987805 @default.
- W4288420493 cites W2808444455 @default.
- W4288420493 cites W2888670505 @default.
- W4288420493 cites W2909813189 @default.
- W4288420493 cites W2945162469 @default.
- W4288420493 cites W3048316716 @default.
- W4288420493 cites W3165424224 @default.
- W4288420493 doi "https://doi.org/10.1016/j.rcim.2022.102428" @default.
- W4288420493 hasPublicationYear "2023" @default.
- W4288420493 type Work @default.
- W4288420493 citedByCount "2" @default.
- W4288420493 countsByYear W42884204932023 @default.
- W4288420493 crossrefType "journal-article" @default.
- W4288420493 hasAuthorship W4288420493A5017433810 @default.
- W4288420493 hasAuthorship W4288420493A5084168891 @default.
- W4288420493 hasBestOaLocation W42884204931 @default.
- W4288420493 hasConcept C154945302 @default.
- W4288420493 hasConcept C162324750 @default.
- W4288420493 hasConcept C187736073 @default.
- W4288420493 hasConcept C199360897 @default.
- W4288420493 hasConcept C2522767166 @default.
- W4288420493 hasConcept C41008148 @default.
- W4288420493 hasConcept C46304622 @default.
- W4288420493 hasConcept C58328972 @default.
- W4288420493 hasConcept C98045186 @default.
- W4288420493 hasConceptScore W4288420493C154945302 @default.
- W4288420493 hasConceptScore W4288420493C162324750 @default.
- W4288420493 hasConceptScore W4288420493C187736073 @default.
- W4288420493 hasConceptScore W4288420493C199360897 @default.
- W4288420493 hasConceptScore W4288420493C2522767166 @default.
- W4288420493 hasConceptScore W4288420493C41008148 @default.
- W4288420493 hasConceptScore W4288420493C46304622 @default.
- W4288420493 hasConceptScore W4288420493C58328972 @default.
- W4288420493 hasConceptScore W4288420493C98045186 @default.
- W4288420493 hasFunder F4320332178 @default.
- W4288420493 hasLocation W42884204931 @default.
- W4288420493 hasOpenAccess W4288420493 @default.
- W4288420493 hasPrimaryLocation W42884204931 @default.
- W4288420493 hasRelatedWork W1575864986 @default.
- W4288420493 hasRelatedWork W1971653722 @default.
- W4288420493 hasRelatedWork W1985541879 @default.
- W4288420493 hasRelatedWork W1996245484 @default.
- W4288420493 hasRelatedWork W2070939464 @default.
- W4288420493 hasRelatedWork W2071061166 @default.
- W4288420493 hasRelatedWork W2312929349 @default.
- W4288420493 hasRelatedWork W3169765971 @default.
- W4288420493 hasRelatedWork W2012842278 @default.
- W4288420493 hasRelatedWork W2346168505 @default.
- W4288420493 hasVolume "79" @default.
- W4288420493 isParatext "false" @default.
- W4288420493 isRetracted "false" @default.
- W4288420493 workType "article" @default.