Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288420678> ?p ?o ?g. }
- W4288420678 endingPage "115992" @default.
- W4288420678 startingPage "115992" @default.
- W4288420678 abstract "Water desalination is a method to deal with water shortage that today considered as a way to meet the growing human demand. Obtaining freshwater at low cost guarantees the stability of the desalination method. Capacitive Deionization (CDI) method is a new technology for deionization of water with saline properties, the least energy, and environmental pollution. In this paper, an Artificial Neural Network (ANN) model was developed to estimate the amount of water produced by the CDI method based on experimental data. The backpropagation Multi-Layer Perceptron (MLP) model with Adam (Adaptive Moment Estimation) learning algorithm with two hidden layers was used. To evaluate performance, RMSE, MAE, MSE and R2 mathematical indices were used. The input layer had three variables that include the amount of initial solution concentration, the flow rate, and the amount of voltage applied to the cell. The output layer had a neuron as the amount of percentage of water desalination. For estimating the amount of salt removal percentage, the ANN modeling method was acceptable. The amount of correlation coefficient between experimental laboratory data and data estimated by ANN for training data was equal to 0.972. The overall correlation coefficient was 0.90 that for estimating the amount of salt removal percentage by CDI method is acceptable. The RMSE values for testing and training data were 0.008 and 0.003, respectively. In the statistical study of the effect of variables, it was found that by CDI method the initial concentration of salt has an inverse relationship with the amount of salt removed from water. Also, the amount of applied voltage has a direct relationship and the amount of feed rate has an inverse relationship with the amount of salt removed from water." @default.
- W4288420678 created "2022-07-29" @default.
- W4288420678 creator A5019927937 @default.
- W4288420678 creator A5032068865 @default.
- W4288420678 creator A5054580445 @default.
- W4288420678 creator A5078758432 @default.
- W4288420678 creator A5082205371 @default.
- W4288420678 date "2022-10-01" @default.
- W4288420678 modified "2023-10-17" @default.
- W4288420678 title "Modeling and predicting of water production by capacitive deionization method using artificial neural networks" @default.
- W4288420678 cites W1450985564 @default.
- W4288420678 cites W1906455749 @default.
- W4288420678 cites W1939092680 @default.
- W4288420678 cites W1975021382 @default.
- W4288420678 cites W1983128903 @default.
- W4288420678 cites W1983926300 @default.
- W4288420678 cites W1988414275 @default.
- W4288420678 cites W1989404572 @default.
- W4288420678 cites W1991744168 @default.
- W4288420678 cites W1993871668 @default.
- W4288420678 cites W2004033531 @default.
- W4288420678 cites W2005267817 @default.
- W4288420678 cites W2012270576 @default.
- W4288420678 cites W2013564552 @default.
- W4288420678 cites W2014559353 @default.
- W4288420678 cites W2018627412 @default.
- W4288420678 cites W2019226144 @default.
- W4288420678 cites W2020099679 @default.
- W4288420678 cites W2021858012 @default.
- W4288420678 cites W2024069373 @default.
- W4288420678 cites W2031565754 @default.
- W4288420678 cites W2036047260 @default.
- W4288420678 cites W2055638681 @default.
- W4288420678 cites W2079521419 @default.
- W4288420678 cites W2087384002 @default.
- W4288420678 cites W2087652733 @default.
- W4288420678 cites W2088465255 @default.
- W4288420678 cites W2092635009 @default.
- W4288420678 cites W2096623033 @default.
- W4288420678 cites W2113489263 @default.
- W4288420678 cites W2135971056 @default.
- W4288420678 cites W2138996545 @default.
- W4288420678 cites W2142192763 @default.
- W4288420678 cites W2160815625 @default.
- W4288420678 cites W2317320233 @default.
- W4288420678 cites W2517972527 @default.
- W4288420678 cites W2537424594 @default.
- W4288420678 cites W2591997260 @default.
- W4288420678 cites W2610761061 @default.
- W4288420678 cites W2766064436 @default.
- W4288420678 cites W2766840064 @default.
- W4288420678 cites W2809016547 @default.
- W4288420678 cites W2903702005 @default.
- W4288420678 cites W2911126036 @default.
- W4288420678 cites W2940898565 @default.
- W4288420678 cites W2965166832 @default.
- W4288420678 cites W2981535523 @default.
- W4288420678 cites W3005897128 @default.
- W4288420678 cites W3080343514 @default.
- W4288420678 cites W3083120452 @default.
- W4288420678 cites W3102615173 @default.
- W4288420678 cites W3117668528 @default.
- W4288420678 cites W3121507955 @default.
- W4288420678 cites W3164526407 @default.
- W4288420678 cites W3167450926 @default.
- W4288420678 cites W3186068291 @default.
- W4288420678 cites W3207311411 @default.
- W4288420678 cites W3207565510 @default.
- W4288420678 doi "https://doi.org/10.1016/j.desal.2022.115992" @default.
- W4288420678 hasPublicationYear "2022" @default.
- W4288420678 type Work @default.
- W4288420678 citedByCount "4" @default.
- W4288420678 countsByYear W42884206782022 @default.
- W4288420678 countsByYear W42884206782023 @default.
- W4288420678 crossrefType "journal-article" @default.
- W4288420678 hasAuthorship W4288420678A5019927937 @default.
- W4288420678 hasAuthorship W4288420678A5032068865 @default.
- W4288420678 hasAuthorship W4288420678A5054580445 @default.
- W4288420678 hasAuthorship W4288420678A5078758432 @default.
- W4288420678 hasAuthorship W4288420678A5082205371 @default.
- W4288420678 hasConcept C105795698 @default.
- W4288420678 hasConcept C119857082 @default.
- W4288420678 hasConcept C139945424 @default.
- W4288420678 hasConcept C154945302 @default.
- W4288420678 hasConcept C155032097 @default.
- W4288420678 hasConcept C179717631 @default.
- W4288420678 hasConcept C185592680 @default.
- W4288420678 hasConcept C2776870568 @default.
- W4288420678 hasConcept C2780092901 @default.
- W4288420678 hasConcept C2780987889 @default.
- W4288420678 hasConcept C33923547 @default.
- W4288420678 hasConcept C39432304 @default.
- W4288420678 hasConcept C41008148 @default.
- W4288420678 hasConcept C41625074 @default.
- W4288420678 hasConcept C50644808 @default.
- W4288420678 hasConcept C55493867 @default.
- W4288420678 hasConcept C60908668 @default.
- W4288420678 hasConcept C87717796 @default.