Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288421384> ?p ?o ?g. }
- W4288421384 abstract "Boolean Networks (BNs) play a crucial role in modeling, analyzing, and controlling biological systems. One of the most important problems on BNs is to compute all the possible attractors of a BN. There are two popular types of BNs, Synchronous BNs (SBNs) and Asynchronous BNs (ABNs). Although ABNs are considered more suitable than SBNs in modeling real-world biological systems, their attractor computation is more challenging than that of SBNs. Several methods have been proposed for computing attractors of ABNs. However, none of them can robustly handle large and complex models. In this paper, we propose a novel method called mtsNFVS for exactly computing all the attractors of an ABN based on its minimal trap spaces, where a trap space is a subspace of state space that no path can leave. The main advantage of mtsNFVS lies in opening the chance to reach easy cases for the attractor computation. We then evaluate mtsNFVS on a set of large and complex real-world models with crucial biologically motivations as well as a set of randomly generated models. The experimental results show that mtsNFVS can easily handle large-scale models and it completely outperforms the state-of-the-art method CABEAN as well as other recently notable methods." @default.
- W4288421384 created "2022-07-29" @default.
- W4288421384 creator A5019773310 @default.
- W4288421384 creator A5064741707 @default.
- W4288421384 creator A5073091856 @default.
- W4288421384 date "2022-08-07" @default.
- W4288421384 modified "2023-10-02" @default.
- W4288421384 title "Computing attractors of large-scale asynchronous boolean networks using minimal trap spaces" @default.
- W4288421384 cites W1480909796 @default.
- W4288421384 cites W1599839677 @default.
- W4288421384 cites W1830972360 @default.
- W4288421384 cites W1957120807 @default.
- W4288421384 cites W1971224531 @default.
- W4288421384 cites W1981898075 @default.
- W4288421384 cites W1982189144 @default.
- W4288421384 cites W2015377888 @default.
- W4288421384 cites W2016743899 @default.
- W4288421384 cites W2032298091 @default.
- W4288421384 cites W2035036685 @default.
- W4288421384 cites W2046538693 @default.
- W4288421384 cites W2052252977 @default.
- W4288421384 cites W2072891907 @default.
- W4288421384 cites W2074524916 @default.
- W4288421384 cites W2101428010 @default.
- W4288421384 cites W2112656672 @default.
- W4288421384 cites W2122902176 @default.
- W4288421384 cites W2128951598 @default.
- W4288421384 cites W2151852639 @default.
- W4288421384 cites W2544038273 @default.
- W4288421384 cites W2576119444 @default.
- W4288421384 cites W2811402744 @default.
- W4288421384 cites W2906588180 @default.
- W4288421384 cites W2921841947 @default.
- W4288421384 cites W2963357480 @default.
- W4288421384 cites W3000286799 @default.
- W4288421384 cites W3012124203 @default.
- W4288421384 cites W3043749166 @default.
- W4288421384 cites W3046757627 @default.
- W4288421384 cites W3089714821 @default.
- W4288421384 cites W3092072692 @default.
- W4288421384 cites W3105213231 @default.
- W4288421384 cites W3118278361 @default.
- W4288421384 cites W3124667933 @default.
- W4288421384 cites W3127839616 @default.
- W4288421384 cites W3161529493 @default.
- W4288421384 cites W3181363992 @default.
- W4288421384 cites W3183793525 @default.
- W4288421384 cites W3187033466 @default.
- W4288421384 cites W3206531527 @default.
- W4288421384 cites W3214697326 @default.
- W4288421384 cites W4200084772 @default.
- W4288421384 cites W4206469416 @default.
- W4288421384 cites W54191953 @default.
- W4288421384 cites W58125149 @default.
- W4288421384 doi "https://doi.org/10.1145/3535508.3545520" @default.
- W4288421384 hasPublicationYear "2022" @default.
- W4288421384 type Work @default.
- W4288421384 citedByCount "2" @default.
- W4288421384 countsByYear W42884213842023 @default.
- W4288421384 crossrefType "proceedings-article" @default.
- W4288421384 hasAuthorship W4288421384A5019773310 @default.
- W4288421384 hasAuthorship W4288421384A5064741707 @default.
- W4288421384 hasAuthorship W4288421384A5073091856 @default.
- W4288421384 hasConcept C105795698 @default.
- W4288421384 hasConcept C11413529 @default.
- W4288421384 hasConcept C114614502 @default.
- W4288421384 hasConcept C121332964 @default.
- W4288421384 hasConcept C134306372 @default.
- W4288421384 hasConcept C134444547 @default.
- W4288421384 hasConcept C151319957 @default.
- W4288421384 hasConcept C154945302 @default.
- W4288421384 hasConcept C164380108 @default.
- W4288421384 hasConcept C177264268 @default.
- W4288421384 hasConcept C184720557 @default.
- W4288421384 hasConcept C187455244 @default.
- W4288421384 hasConcept C199360897 @default.
- W4288421384 hasConcept C2778755073 @default.
- W4288421384 hasConcept C28225019 @default.
- W4288421384 hasConcept C31258907 @default.
- W4288421384 hasConcept C32834561 @default.
- W4288421384 hasConcept C33923547 @default.
- W4288421384 hasConcept C41008148 @default.
- W4288421384 hasConcept C45374587 @default.
- W4288421384 hasConcept C62520636 @default.
- W4288421384 hasConcept C72434380 @default.
- W4288421384 hasConcept C80444323 @default.
- W4288421384 hasConceptScore W4288421384C105795698 @default.
- W4288421384 hasConceptScore W4288421384C11413529 @default.
- W4288421384 hasConceptScore W4288421384C114614502 @default.
- W4288421384 hasConceptScore W4288421384C121332964 @default.
- W4288421384 hasConceptScore W4288421384C134306372 @default.
- W4288421384 hasConceptScore W4288421384C134444547 @default.
- W4288421384 hasConceptScore W4288421384C151319957 @default.
- W4288421384 hasConceptScore W4288421384C154945302 @default.
- W4288421384 hasConceptScore W4288421384C164380108 @default.
- W4288421384 hasConceptScore W4288421384C177264268 @default.
- W4288421384 hasConceptScore W4288421384C184720557 @default.
- W4288421384 hasConceptScore W4288421384C187455244 @default.
- W4288421384 hasConceptScore W4288421384C199360897 @default.
- W4288421384 hasConceptScore W4288421384C2778755073 @default.